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ABSTRACT 

The objective of this paper is to introduce and demonstrate a new method for the topology optimization of compliant mechanisms. The 

proposed method relies on exploiting the topological derivative, and exhibits numerous desirable properties including: (1) the 

mechanisms are hinge-free, (2) mechanisms with different geometric and mechanical advantages can be generated by varying a single 

control parameter, (3) a target volume fraction need not be specified; instead numerous designs, of decreasing volume fractions, are 

generated in a single optimization run, and (4) the underlying finite element stiffness matrices are well-conditioned. The proposed method 

and implementation are illustrated through numerical experiments in 2D and 3D. 

1. INTRODUCTION 

Compliant mechanisms are popular in mechanical design for multiple reasons: they are easy to fabricate, exhibit low wear and low friction, 

and have a built-in restoring force [1], [2]. They are often preferred over their rigid-body counterparts in various applications including 

micro-electro-mechanical-systems (MEMS) [3], surgery [4], torque-measurements [5], etc. 

Compliant mechanisms are synthesized today through one of two distinct methods [6]: (1) pseudo rigid body models, and (2) topology 

optimization. The relative advantages of these two methods are discussed, for example, in [6], [7]. The focus of this paper is on topology 

optimization of compliant mechanisms.  

Topology optimization of compliant mechanisms entails two tasks: (1) Design formulation: How does one formulate and pose the design 

problem of compliant mechanisms, i.e., how does one prioritize various objectives such as flexibility, stiffness, and efficiency? (2) Spatial 

parameterization: How does one parameterize the spatial domain to solve the design problem?  

Various design formulations and spatial parameterization techniques have been proposed; these are reviewed in Section 2. Typically, any 

combination of the two can be chosen; however, certain pairs have been established to be robust and efficient. 

In this paper, a specific combination of design formulation and spatial parameterization method is considered; this combination relies 

heavily on the concept of topological derivative rather than pseudo-densities used in Solid Isotropic Material with Penalization (SIMP). 

By avoiding pseudo-densities, many of the ‘hinge-problems’ are avoided; see, for example, [8], [9]. The proposed methodology is 

established in Section 3, while the implementation details are discussed in Section 4.  This is followed by numerical experiments in Section 

5, and conclusions in Section 6. 
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2. LITERATURE REVIEW  

Consider the ‘classic inverter’ problem posed in Figure 1: a force is applied on one side, and an ‘inverted’ output displacement is desired 

on the other side. A suitable compliant mechanism must be designed within the specified domain to achieve this objective. 

As is well known, this entails multiple objectives [10], [11], [12], [13], [14]: (1) the compliant mechanism must exhibit sufficient flexibility 

to achieve the desired displacement at the output, and (2) it must exhibit sufficient stiffness to resist a work-piece at the output. In 

addition, constraints on the input displacement, and maximum stress constraints must be met. Finally, it is desirable to avoid ‘hinges’ 

and ‘checker-board patterns’. 

 

Figure 1: Classic inverter problem.  

Flexibility of a compliant mechanism is usually quantified via one of the following: (a) as the ratio of output to input displacement, i.e., 

geometric advantage [15], or (b) the mutual strain energy [10], [11], [16]. On the other hand, stiffness is usually quantified as: (a) the ratio 

of output to input force, i.e., mechanical advantage [12], or (b) output strain energy, or (c) the sum of input and output compliances [16]. 

Often, an auxiliary spring is used at the output to capture stiffness. Further, geometric and mechanical advantages can be combined into 

a single quantity namely transfer-efficiency [15], [17], [18]. 

Flexibility and stiffness typically work against each other. Consequently, compliant mechanism design is a multi-objective problem with 

multiple ‘Pareto’ solutions [2], [14]. For a given volume fraction, multiple solutions to the inverter problem exists [15], depending on how 

the two objectives are combined. For example, in [12], the mechanical advantage is maximized subject to flexibility constraints, whereas 

in [11], the ratio of mutual strain energy to output strain energy is maximized, etc. The relationship between many of these formulations 

is discussed in [12]. More recently, a metric to quantify the uniformity of the strain energy distribution within a compliant mechanism is 

proposed in [19]. Formulations that account for large displacements are considered in [17], [18], while cellular (repetitive) mechanisms 

are considered in [20] . A full summary of all such design formulations is beyond the scope of this paper; the reader is referred to [7], [21] 

for a review.  

Once an appropriate combination of flexibility and stiffness has been chosen, a spatial parameterization technique is essential for 

optimization. By far, the most popular technique today is Solid Isotropic Material with Penalization (SIMP) [22], [23]. In SIMP, pseudo-

densities are assigned to each of the finite-elements within the mesh, and optimized to result in a desired topology. Alternately, one may 

use level-sets [24], and these offer certain benefits over SIMP-based methods, summarized in [13], [17], [25], [26]. In addition, 

evolutionary methods [16], [27], ground structure methods [28] and homogenization methods [2] have also been explored. 
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Avoiding hinges in compliant mechanisms is of significant interest since hinges are regions of high stress concentration [8]. As explained 

in [8], there is an underlying (numerical) reason for the formation of hinges in SIMP-based topology optimization. To quote [8]: “The 

conclusion then is that optimization algorithms are exploiting a loophole in the finite element model and the [SIMP-based] design 

parameterization of topology optimization to best optimize the objective function {to result in point flexures]”. In other words, since one 

is trying to maximize stiffness and output displacement, (finite) elements with low pseudo-densities create a ‘loop-hole’ for flexures to 

form: these flexures offer artificial finite stiffness with large output displacement. The authors of [8] therefore propose a novel scheme of 

penalizing the formation of such hinges. In [9], the authors suggest that one should maximize the strain energy stored in a mechanism, 

subject to input and output displacement constraints. In [15], the authors make use of multiple springs to achieve a hinge-free design. In 

this paper, by exploiting topological sensitivity instead of pseudo-densities, we directly avoid the formation of flexures.  As a final note, 

the author of [29] provides an elegant method to detect and remove checker-board patterns during topology optimization.  

The design formulation and spatial parameterization technique are typically independent of each other. However, together they determine 

the robustness, numerical efficiency, and simplicity of the resulting topology optimization method. 

3. THEORY 

In this paper, a specific combination of a design formulation and spatial parameterization technique is proposed. As discussed below, the 

design formulation is a modified version of the one proposed in [27], while the parameterization technique is a novel use of the topological 

sensitivity to compliant mechanism design. 

3.1 Design Formulation 

The proposed design formulation is illustrated using the inverter problem as an example. It is well known that this problem entails 

(repeated) solution of a pair of structural problems; the first is the ‘input’ problem where the force is applied as in Figure 2, resulting in 

the displacement field 
in
u , and the input strain energy: 

 

1
( ) ( )

2in in in
S u u dσ ε

Ω

= Ω∫  (3.1) 

  

Figure 2: The primary input problem. 

Next, a unit output force is applied as in Figure 3, resulting in the displacement field 
out
u , and the output strain energy: 
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1
( ) ( )

2out out out
S u u dσ ε

Ω

= Ω∫  (3.2) 

  

Figure 3: The secondary output problem. 

Finally, given the two displacement fields, one can also define the mutual potential energy [30] as: 

 
( ) ( )

mut out in
S u u dσ ε

Ω

= Ω∫  (3.3) 

Various combinations of these three energies have been used to construct a design objective of compliant mechanisms (see [10], [21], 

[27]). In this paper, we start with the formulation proposed in [27]: 

 
max

mut

in out

S
Max

S S

v v

ϕ
   ≡   + 

≤

 (3.4) 

The motivations for the above definition are as explained in [27]: (1) the objective is non-dimensional, (2) external springs are not required, 

and (3) input and output displacement constraints are accounted for indirectly.  

However, we propose a simple modification to the above objective, namely: 

 

 
max

2 2(1 )
mut

in out

S
Max

S S

v v

ϕ
η η

   ≡   + − 
≤

 (3.5) 

where 0 1η< <  is a user-specified control parameter. Clearly, 0.5η =
 
recovers the original formulation. Later in the paper, we 

demonstrate that increasing η  increases the geometric advantage, and decreases the mechanical advantage of the mechanism (and vice-

versa). Given the above design formulation, the specific spatial discretization technique is discussed next. 

3.2 Topological Derivative 

The proposed technique relies heavily on the concept of topological derivative. Topological derivative, a.k.a., topological sensitivity, is the 

first order impact of inserting an infinitesimal hole on various quantities of interest. This concept has its roots in the influential paper by 

Eschenauer [31], and has later been extended and explored by numerous authors [32], [33], [34], [35], [36], including generalization to 

arbitrary features [37], [38], [39].  

To understand this concept, consider again the inverter problem; let S  denote any one of the energies defined earlier. Suppose we modify 

the topology by inserting a hypothetical hole of radius r  at point p  (see Figure 4). This insertion will result in a change in the quantity 
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S . Topological sensitivity is defined as the ratio of change in the quantity of interest to the area of the hole, as the hole-size is shrunk to 

zero. In 2-D, we have: 

 
20

( )
( ) lim

r

S r S
p

rπ→

−
≡T �  (3.6) 

 

      

Figure 4: A hypothetical topological change. 

Various strategies have been proposed to obtain a closed-form expression for the topological derivative. A particularly powerful strategy 

relates topological sensitivity to shape sensitivity [40]. Specifically, consider the problem posed in Figure 5, where the radius of the hole 

is controlled by a shape parameter τ .  

      

Figure 5: A hypothetical shape change. 

For a given radius, one can define shape sensitivity as: 

 
0

( )
( )

r

dS r
r

dr
χ

=

=  (3.7) 

Well-known adjoint methods [41], [42], [43] can now be used to find closed-form expressions for shape-sensitivity (as a function of the 

radius r ).  It was established in [40] that topological derivative as defined in Equation (3.6) is related to shape sensitivity via: 

 
0

( )
( ) lim

2r

r
p

r

χ

π→
=T �  (3.8) 

Consequently, one can derive a closed-form expression for the topological derivative, and is given by [32], [33], [34], [35], [36]: 

 
2

4 1 3
( ) ( ) : ( ) ( ( )) ( ( ))

1 1
p u tr u tr

ν
σ ε λ σ ε λ
ν ν

−
= −
+ −

T �  (3.9) 
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where ν

 
is the Poisson ratio, ( )uσ

 
is the stress field associated with the primary field u , and ( )ε λ  is the strain field associated with an 

adjoint field λ  (see next Section).  The stresses and strains are evaluated at point p  in the original domain, i.e., before the hole is inserted. 

In 3-D, the topological sensitivity field is given by: 

 20 ( ) : ( ) (3 2 ) ( ) ( )u tr u trµσ ε λ γ µ σ ε λ= + −T  (3.10) 

where &µ γ  are the Lame parameters. 

3.3 Topological Fields 

The objective posed in Equation (3.5)  involves three quantities of interest: , &
in out mut
S S S . One can therefore define three topological 

sensitivities. Specifically, if we set 
in

S S= , then one can show that the adjoint is
in
uλ = −  (see [40], for example); therefore, in 2-D: 

 
2

4 1 3
( ) ( ) : ( ) ( ) ( )

1 1
in in in in in
p u u tr u tr u

ν
σ ε σ ε
ν ν

−    = − +       + −
T�   (3.11) 

Similarly, with 
out

S S= , we have 
out
uλ = − : 

 
2

4 1 3
( ) ( ) : ( ) ( ) ( )

1 1
out out out out out
p u u tr u tr u

ν
σ ε σ ε
ν ν

−    = − +       + −
T�   (3.12) 

Finally, 
mut

S S=  we have: 

 
2

4 1 3
( ) ( ) : ( ) ( ) ( )

1 1
mut in out in out
p u u tr u tr u

ν
σ ε σ ε
ν ν

−    = − +       + −
T�   (3.13) 

In other words, given the two displacement fields in the original domain (without the hole), one can compute the topological sensitivities 

for the three quantities; these are illustrated in Figure 6 (scaled for convenience).  

Figure 6a, for example, illustrates the input topological sensitivity: observe that inserting a hole near the point of force application or near 

the displacement constraint has a significant impact on input strain energy (as expected), whereas inserting a hole far away from these 

locations has little or no impact. The other two fields can be interpreted similarly; the mutual topological sensitivity field is ‘flat’, and often 

difficult to visualize. 

 

(a) Input topological sensitivity.                      (b) Output topological sensitivity.                              (c) Mutual topological sensitivity. 

Figure 6: The three topological sensitivity fields. 
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Given these three fields, one can compute the topological sensitivity of the objective function ϕ  by differentiating Equation (3.5) and 

applying the chain rule, resulting in: 

 
( )

mut mut in in out out
w w w

ϕ
= − +T� T� T� T�  (3.14) 

where the weights are given by: 

 

( )

( )

( )

2

2

2

2 2(1 )

2(1 )

2 2(1 )

1

2 2(1 )

mut

in

in out

mut

out

in out

mut

in out

S
w

S S

S
w

S S

w
S S

η

η η

η

η η

η η

=
+ −
−

=
+ −

=
+ −

 (3.15) 

Without a loss in generality, these weights can be scaled such that: 

 
1

in out mut
w w w+ + =  (3.16) 

3.4 Topological Level-Set  

Thus the proposed methodology is as follows. At the start of optimization process (at a volume fraction of 1), suppose the mutual energy 

is small (this is usually the case), i.e., suppose: 

 

0

0

1

in

out

mut

w

w

w

≈

≈

≈
 (3.17) 

We then have: 

 
mutϕ

≈T� T�  (3.18) 

In order to remove material, the key idea is to interpret the field 
ϕ
T� as a level-set.  

Specifically, Figure 7a illustrates the above field together with a cutting-plane at an arbitrary height τ  that passes through the field. One 

can now define a domain τΩ  per: 

 { | ( ) }; : desired  cutoff valuep p
τ

ϕ τ τΩ ≡ >T  (3.19) 

In other words, the domain τΩ  is the set of all points where the topological field exceedsτ ; the induced domain τΩ  is illustrated in Figure 

7b. This corresponds to a topology of reduced volume fraction such that elements that contribute least to the objective are deleted. The 

cutting-plane value τ  can be chosen such that, say, 5% of the volume is removed. This process however has to be repeated since the field 

problem has changed, and so have the topological sensitivity fields. 
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(a) Topological sensitivity field and a cutting plane. (b) Induced domain τΩ     

Figure 7: Topological sensitivity field for (0, 0,1)w = .  

For a desired volume fraction, a fixed-point iteration [36], [44], [45] is carried out involving three quantities (see Figure 8): (1) domain 

τΩ , (2) displacement fields over τΩ , and (3) topological sensitivity fields over τΩ . Typically, 2~4 iterations are sufficient until 

convergence is reached in the objective. The fixed-point iteration is discussed in further detail, for example, in [36], [44], [45]. The concept 

of topological sensitivity has also been applied to stress-constrained volume minimization in [46]. 

    

Figure 8: Fixed point iteration. 

Once the volume fraction of 0.95 has been reached, the weights are recomputed using Equation (3.15). The process is repeated until the 

optimization cannot proceed further; see next Section for details. 

4. IMPLEMENTATION 

4.1 Finite Element Analysis 

For finite element purposes, the spatial domain in 2-D is discretized into bi-linear quad elements (see Figure 9). In 3-D, tri-linear 

hexahedral elements are used since offer a good compromise between accuracy and speed. The corresponding shape-functions and 

element-stiffness matrices can be found in [47]. 

 

Figure 9: A finite element model with bilinear quad elements 
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When a topology is extracted using Equation (3.19), elements are classified as either being ‘in’ or ‘out’; partial elements, i.e., pseudo-

densities, are avoided here since they lead to stiffness matrices with large condition numbers [45], [48], and promote the formation of 

hinges. Thus, for example, after the first step of the optimization process, the domain may converge to the one illustrated in Figure 10.  

 

Figure 10: A new topology with reduced volume fraction. 

Once a new topology is obtained, the element stiffness matrices of all the ‘in-elements’ are assembled to form the global K  matrix. The 

input and output problems are then solved using the Jacobi-preconditioned conjugate gradient iterative solver. The reason for choosing 

an iterative solver over a direct solver is discussed in the next Section. Since pseudo-densities are avoided, the matrices are well-

conditioned and the convergence is fast. Further, by avoiding pseudo-densities, many of the ‘hinge-problems’ [9] are avoided, as 

demonstrated through numerical experiments. 

While the ‘out-elements’ are not included in the assembly of the global K  matrix, these are allowed (and may) reenter during the next 

iteration as follows. Consider Figure 11a where the ‘in’ and ‘out’ elements within the current topology are identified; once the topological 

sensitivities over the ‘in’ elements are computed, the sensitivities at all nodes (see Figure 11b) are computed by averaging the element 

sensitivities. Finally, prior to the next iteration, an extrapolation procedure is implemented to predict the topological sensitivities over 

the ‘out’ elements that are adjacent to the boundary (see Figure 11c). This provides a mechanism for the ‘out’ elements to enter the 

optimization process (as observed in the numerical experiments), without having to assign pseudo-densities. 

 

(a) Compute field over in-elements. (b) Estimate field over the nodes. (c) Estimate over ‘out’ elements near boundary. 

Figure 11: Estimating the topological sensitivities over the ‘out’ elements 
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In 3-D, explicit assembly of large linear systems can be time and memory consuming. Therefore, in 3-D, we have chosen an ‘assembly-

free’ (a.k.a. ‘matrix-free’) approach [49]. The linear system is solved using the assembly-free Jacobi-preconditioned conjugate-gradient 

method [50]. Since this only requires a sparse matrix-vector multiplication (SpMV), this is implemented as follows: 

 
 

= = 
 
∑ ∑e e e

e e

Ku K u K u  (3.20) 

In other words, the element solution vectors are multiplied by the (non-zero) element stiffness matrices, and then assembled. An 

additional benefit of a matrix-free implementation is that only the non-zero elements need to be considered. As the topology evolves, the 

computational cost reduces dramatically.  

4.2 Recovery from Pathological Cases  

During the optimization process, certain pathological cases may arise. For example, one such case is illustrated in Figure 12 where the 

output force is disconnected. Fortunately, when an iterative solver is used, this can be easily detected since the residual error will grow 

rapidly, and the iterative solver can be terminated within a few iterations.  

Once this condition is detected, the weights in Equation (3.16) are modified (in this instance,  
out
w  is increased), and a new topology is 

extracted. The process is repeated until the finite element analysis is successful. 

 

Figure 12: Pathological case of a disconnected mesh. 

4.3 Algorithm 

Thus the overall algorithm is as follows (see Figure 13): 

1. We start with cΩ = Ω , i.e., we start with a volume fraction of 1.0. The weights are computed per Equation (3.15) 

2. A finite element analysis is carried out on cΩ . The fields , &
in out mut
T T T  are computed via Equations (3.11), (3.12) and (3.13). The 

level-set
ϕ
T  is computed via Equation (3.14).  A simple filtering scheme is used where, at every node, the field is evaluated as the 

average of the field on all neighboring elements. Then, the field on every element is evaluated as the average of the field on all 

neighboring nodes. 
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3. Given the filtered level-set 
ϕ
T  and a target volume fraction (typically 5% less than the current volume fraction), we seek the 

parameter τ  such that the volume of τΩ  is equal to the target volume fraction. This is a binary-search algorithm between the 

maximum and minimum values of 
ϕ
T . 

4. A fixed-point iteration is carried out on step-3 until the objective converges (to within a small percentage).  

5. If the iteration fails to converge (due to pathological cases discussed above), the weights are modified as discussed previously. In 

particular, if the input-strain energy diverges then 
in
w is increased by a small amount (0.05), and if the output-strain energy diverges, 

then 
out
w is increased. The weights are then normalized per Equation (3.16) .  

6. Once the above process converges to a specific volume fraction, the algorithm terminates if the final volume fraction is reached, or if 

mut
w is smaller than a prescribed value (0.1), i.e., no further reduction in volume fraction is possible. 

7. (Else) The volume fraction is decreased and the weights are recomputed per Equation (3.15), and normalized per Equation (3.16). 

8. Once the algorithm terminates, the iso-surface is extracted. 

 

Figure 13: The proposed algorithm.  

5. NUMERICAL EXPERIMENTS 

In this Section, we present results from numerical experiments based on the above algorithm. Many of these examples have been analyzed 

in detail in [21].  Unless otherwise noted, the default parameters are: 

• The material properties are that of Nylon with 3E GPa=  and 0.4ν = . 

• The volume step-size is 0.04. 
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• The target volume fraction is 0.005 (however, the algorithm may terminate at a larger volume fraction) 

• The control variable η  is set to 0.5. 

The geometric and mechanical advantages are defined as: 

 
Input force

Output displacement

Input displacement
GA ≡  (4.1) 

 
Output force

Input displacement

Output displacement
MA ≡  (4.2) 

All 2-D experiments were conducted sing Matlab R2013a running on a Windows 7 64-bit machine with the following hardware: Intel I7 

960 CPU quad-core running at 3.2GHz with 6 GB of memory. The 3-D experiment was conducted using a C++ implementation with the 

following additional hardware: a graphics programmable unit (GPU) is an NVidia GeForce GTX 480 (480 cores) with 1.5 GB.  

5.1 Inverter 

The first example is that of an inverter. The finite element model is illustrated in Figure 14, where a domain of 200mm x 200mm is 

discretized with 1024 bilinear-quad elements. A force of 10 N is applied at (0,100), and an output in the opposite direction is desired at 

(200,100) as illustrated. The objective is to design a mechanism as light as possible, and the control parameter η  is set to 0.5. 

 

Figure 14: 2D finite element model for the inverter problem. 

The algorithm terminated after 211 finite element operations, at a volume fraction of 0.205; see Figure 15. At termination: 

• The displacement at the point of force application was 0.40 mm (to the left). 

• The displacement at the output was 0.32 mm (to the right). 

• The mechanism has a geometric advantage (GA) of 0.8 and a mechanical advantage (MA) of 0.71. 

• These designs are topologically consistent with those found in the literature. However, the designs computed through the proposed 

method do not exhibit point-flexures. 

• The time taken to compute the final design was approximately 2 minutes, 20 seconds. 
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(a) Final design.                                       (b) Un-deformed and deformed mesh. 

Figure 15: The inverter design; deformation in (b) is scaled for clarity. 

Observe the ‘steady’ increase in GA, MA and the objective as a function of the volume fraction in Figure 16. 

  

(a) Geometric and mechanical advantages. (b) Objective function ϕ  

Figure 16: Mechanism history for the inverter. 

Intermediate designs at volume fractions of 0.3 and 0.4 are illustrated in Figure 17.  

 

Figure 17: Intermediate designs for the inverter at volume fractions of 0.3 and 0.4. 

5.2 Symmetric Inverter 

Next consider the symmetric inverter posed in Figure 18 where the boundary is fixed on all four corners as illustrated; a force of 10 N is 

applied as shown. 

 

Figure 18: Symmetric inverter problem.  
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For a mesh discretization of 500 elements, the final design at a volume fraction of 0.29 is illustrated in Figure 19.  The time taken is 

approximately 1 minute, 5 seconds. Once again, the designs are topologically consistent with those found in the literature, but do not 

exhibit point-flexures. 

 

Figure 19: Symmetric inverter for 500 elements ( 0.5η = ).  

As one can observe in Figure 20, due to the symmetry of the problem, the geometric and mechanical advantages are identical for all 

volume fractions.  

 

Figure 20: History of the geometric and mechanical advantages for the symmetric inverter.  

To illustrate the mesh independency, the symmetric inverter for 1000 elements is illustrated in Figure 21.  

 

Figure 21: Symmetric inverter for 1000 elements. 

5.3 Cruncher 

Next consider the ‘cruncher problem’ posed in Figure 22’; two forces, each of 10 N is applied as shown. The objective here is to study the 

impact of the control parameter η ; the target volume fraction was set to 0.3. 
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Figure 22: Cruncher problem.  

For a mesh discretization of 1000 elements, and 0.5η = , the final design (devoid of point-flexures) is illustrated in Figure 23. The time 

taken is approximately 3 minutes, 15 seconds. As one can observe the geometric advantage of the mechanism if small (GA = 0.32), while 

the mechanical advantage is large (MA = 1.59). 

      

(a) Final design.                                   (b) Geometric and mechanical advantages 

Figure 23: Cruncher design for 0.5η = .  

A simple method to increase geometric advantage (GA) is to increase the control parameter η . For 0.6η =  , the design and results are 

illustrated in Figure 24. GA has increased to 0.59, while the mechanical advantage has dropped to 1.1. The time taken is approximately 3 

minutes, 25 seconds. We avoid the extreme cases of 0η =  and 1η = , for the following reason. Consider the case  of 0η = ; observe 

that in Equation (3.15), the weight 
in
w  vanishes. Thus, the corresponding topological sensitivity field  

in
T� does not play a role during the 

optimization process, and therefore the topology will get disconnected from the fixed constraints on the left edge. 

  

(a) Final design.                        (b) Geometric and mechanical advantages 

Figure 24: Cruncher for 0.6η =  
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5.4 Grasper 

Next consider the grasper problem posed in Figure 25; a force of 10 N is applied. Exploiting symmetry, only half the domain is modeled.  

 

(a) Full model.            (b) Model exploiting symmetry. 

Figure 25: Grasper problem.  

With a mesh discretization of 2000 elements, the final design (volume fraction of 0.3) is illustrated in Figure 26. With 0.5η =  , the 

performance factors are: GA =0.62 and MA equal to 0.99.  

 

Figure 26: Grasper design. 

5.5 Inverter (3-D) 

The theory and algorithm extends to 3D, and is illustrated via a 3D inverter problem in Figure 27 where the dimensions of the domain 

are 200mm x 200mm x 10 mm. A force of 10 N is applied as shown, and an output in the opposite direction is desired as illustrated. The 

material properties are that of Nylon with 3E GPa=  and 0.4ν = . 

 

Figure 27: 3-D inverter problem. 

The finite element model with 2000 tri-linear hexahedral elements is illustrated in Figure 28. 
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Figure 28: Finite element discretization with 2000 elements. 

The algorithm terminated after 186 finite element operations, at a volume fraction of 0.20. The final design is similar to the 2-D version, 

with similar performance characteristics. 

 

(a) Un-deformed                         (b) Deformed. 

Figure 29: 3D inverter design.  

5.6 Flap (3-D) 

The final 3D example is that of a ‘flap’ whose dimensions are approximately 90 mm x 70mm x 10 mm. Other feature dimensions are as 

illustrated in Figure 30. On the back face, a force of 10 N is applied in the middle, and is fixed at the two ends. Output displacement is 

desired on the bottom face as illustrated; other flap designs have been considered in the literature [51]. 

 

Figure 30: Flap problem.  

The finite element model with 2000 tri-linear hexahedral elements was constructed and solved. The algorithm terminated after 246 finite 

element operations, at a volume fraction of 0.23 in 4 minutes. The performance factors are: GA = 1.1 and MA = 0.6. 
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Figure 31: Flap design.  

6. CONCLUSIONS 

A new method for the topology optimization of compliant mechanisms was explored in this paper. The method relied heavily on the 

concept of topological sensitivity, and its viability was demonstrated through numerical experiments. Future work will focus on: (1) 

exploring design formulations that include springs and displacement/stress constraints, and (2) extending the current formulation to 

handle large deformation, and multi-physics. 
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