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ABSTRACT 

The primary computational bottle-neck in implicit structural 
dynamics is the repeated inversion of the underlying stiffness 
matrix. In this paper, a fast inversion technique is proposed by 
merging four distinct but complementary concepts: (1) 
voxelization with adaptive local refinement, (2) assembly-free 
(a.k.a. matrix-free or element-by-element) finite element 
analysis, (3) assembly-free deflated conjugate gradient, and (4) 
multi-core parallelization. In particular, we apply these concepts 
to the well-known Newmark-beta method, and the resulting 
assembly-free deflated conjugate gradient (AF-DCG) is well-
suited for large-scale problems. It can be easily ported to many-
core CPU and multi-core GPU architectures, as demonstrated 
through numerical experiments. 

1. INTRODUCTION 

The focus of this paper is on large-scale structural dynamics, 
where one is interested in transient analysis of flexible and 
geometrically complex elastic bodies such as the one in Figure 1. 
Specifically, given an external force that varies over time, the 
objective is to find the displacements, stresses, etc. within the 
body, as a function of time. Transient analysis is critical, for 
example, in impact studies, predicting fatigue-life, crack-
propagation studies, etc. 

 

Figure 1: An example of transient analysis of a thin elastic 
structure. 

A standard approach to structural dynamics of flexible bodies is 
to discretize the geometry via finite elements; this results in a 
system of second order differential equations in time [1]  

 extMu Cu Ku f+ + =�� �            (1.1) 
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In this paper, without loss of generality, we shall assume 
proportional damping: 

 d dC M Kα β= +   (1.3) 

where &d dα β are the damping coefficients. 

Equation (1.1) is typically solved through time-stepping, either 
via an explicit or an implicit method. In explicit methods, the 

solution at time t  is used to obtain the solution at t t+∆ . This, 

as it turns out, entails the inversion of the mass matrix M [2] (by 
inversion, we mean solving linear systems of equations governed 
by the underlying matrix). Since M can often be diagonalized, its 
inversion is trivial, leading to rapid time-stepping. However, 

explicit methods are unstable for large time steps t∆ . 

On the other hand, implicit methods such as the Newmark-beta 
method are unconditionally stable, but require the ‘inversion’ of 
an effective stiffness matrix [1], a computationally demanding 
task. In this paper, we explore a new method for fast ‘inversion’ 
of this stiffness matrix.  

In Section 2 the Newmark-beta is summarized, followed by a 
review of the literature relevant to this paper. In Section 3, the 
proposed method is discussed, together with its CPU and GPU 
implementation. Numerical experiments are presented in 
Section 4. Conclusions and future work are covered in Section 5. 

2. LITERATURE REVIEW  

2.1 Newmark-beta Method 

One of the most popular implicit methods in structural dynamics 
is the Newmark-beta method. In 1959, Newmark formulated this 
method [3] by introducing two numerical unit-less scalar 

parameters β and γ ( )0 0.5 , 0 1β γ≤ ≤ ≤ ≤ . The desired 

quantities at time t t+∆  are modeled as a function of the 

quantities at time t  as follows: 
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By substituting these into Equation (1.1), we obtain a simple 
linear system: 
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=  (2.4) 

where effK and efff  are effective stiffness matrix and effective 

force vector, respectively, where: 

 

( )2
1eff

K K C M
t t

γ

β β

= + +
∆ ∆

   (2.5)   

 
( )

( )2

2

2

1 1 1 2

2

eff ext C M

t t t t

C

t t t

M

t t t

f f f f

t
f C u u u

t

f M u u u
tt

γ βγ γ β

β β β

β

β ββ

+∆ +∆
= + +
 ∆ −  −  = + +  ∆  
  − = + +   ∆ ∆  

� ��

� ��

  (2.6) 

As is typical, the effective stiffness matrix is assumed to be 
symmetric positive-definite. In linear elasticity, the stiffness and 
mass matrices remain constant throughout the analysis, and the 
effective stiffness matrix needs to be computed only once. 
However, the effective force vector must be updated at each time 
step since it depends on the displacement, velocity, and 
acceleration fields. In large-deformation models and in elasto-
plasticity, the effective stiffness matrix can change over time. 

2.2 Direct and Iterative Solvers: Tradeoff 

Computationally, the most intensive task in the Newmark-beta 
method is solving the linear system in Equation (2.4). Direct 
solvers are robust, and rely on factoring the matrix, for example, 
into a Cholesky decomposition: 

 eff TK LL=   (2.7) 

This is followed by a triangular solve: 

 
1( )T eff

t t t t
u L L f− −

+∆ +∆
=  (2.8) 

In transient analysis, direct methods are particularly favorable 
since the factorization needs to be carried just once. 

However, due to the explicit factorization, direct solvers are 
memory intensive. For example, to quote from the ANSYS 
manual [4], “[sparse direct solver] is the most robust solver in 
ANSYS, but it is also compute- and I/O-intensive”. Specifically, 
for a matrix with one million degrees of freedom [4]: 

• Approximately 1 GB of memory is needed for assembly. 

• An additional 10 to 20 GB memory is needed for 
factorization. 

Since memory-access is often the bottle-neck in modern 
computer architecture [5], this directly translates into increased 
clock time. In other words, reducing memory usage is crucial 
for large-scale problems.  

Iterative solvers have low foot-print; they do not factorize the 
stiffness matrix, but compute the solution iteratively. When the 
stiffness matrix is symmetric and positive definite, the most 
common iterative solver is the conjugate gradient [6]. In 
iterative solvers: 

1. The number of iterations must be minimized; this typically 

achieved through an efficient preconditioner and/or through 

multi-grid/deflation techniques. In this paper, we consider a 

particular deflation technique proposed in [7]. 

2. Equally important is an efficient implementation of sparse 

matrix-vector multiplication (SpMV). SpMV has drawn 

considerable attention from several researchers. For example, 

see [8] for an implementation of SpMV on graphics-

programmable units (GPUs). In this paper, we consider an 

assembly-free implementation of SpMV. 

In summary, one can conclude that, for large-scale implicit 
structural dynamics: 

• Iterative solvers scale better than direct methods; this is 

illustrated through a numerical experiment in Section 4. 

• Preconditioning and/or multi-grid/deflation is important in 

iterative techniques. 

• Efficient SpMV and reducing memory foot-print will reduce 

the computational cost per iteration. 

• Exploiting multi-core architecture shows promise, but 

hinges on building parallelization-friendly algorithms. 

2.3 Assembly Free Finite Element Analysis 

In classic FEA, the element matrices are typically assembled into 

global matrices &K M . In this paper, we will apply assembly-

free FEA where neither K  nor M are assembled/stored. 
Instead, the fundamental matrix operations such as the sparse 
matrix-vector multiplication (SpMV) are performed in an 
assembly-free elemental level, i.e., an SpMV operation ofKu is 
interpreted as follows: 

 ( )e e
e

Ku K u= ∑   (2.9) 

In other words, instead of assembling the global matrix, and 
then carrying out SpMV, an element-vector multiplication is 
carried, and then the results are assembled. This idea was first 
proposed in 1983 [9], but has resurfaced due to the surge in fine-
grain parallelization.  

Current research on assembly-free FEA can be grouped into 
three categories: (1) developing effective preconditioners, (2) 
extending the concept to a wider-class of problems, and (3) its 
efficient implementation, for example, on multi-core graphics-
programmable units (GPU). 

In the first category, Augarde et al. [10] developed an element 
based displacement pre-conditioner for linear elasticity. To 
accelerate convergence, Arbenz et al. [5] introduced a scalable 
multi-level pre-conditioner for microstructural FEA. The 
effectiveness of this preconditioner was demonstrated on finite 
element models with millions of elements. Bellavia et al. (2013) 
[11] introduced a matrix-free pre-conditioner for symmetric 
positive definite systems that relies on partial Cholesky 
factorization with deflation techniques. This was used for solving 
sequences linear systems with different right-hand sides. 

In the second category, Yadav et al. [12] used an assembly-free 
method to perform large-scale modal analysis, and also 
discussed its implementation on the GPU.  

In the third category, Mueller et al. [13], presented a matrix-free 
GPU implementation of a preconditioned CG solver for 
anisotropic elliptic partial differential equations. In [14], the 
performance of the GPU implementation of assembly-free FEA 
using trilinear hexahedral elements, was compared against the 
corresponding serial version run on a conventional processor for 
various mesh sizes and sparse matrix storage schemes. 



 

In this paper, we extend assembly free FEA to transient analysis, 
propose an efficient deflation (preconditioning) technique, and 
discuss its implementation on the GPU. 

3. PROPOSED STRATEGY  

In the present paper, a deflated implicit structural dynamics 
method is developed by implementing and merging four distinct 
but complementary concepts (see Figure 2). We shall discuss 
each of these concepts in the following sections, but briefly: 

1. Voxelization with Adaptive Refinement: Voxelization is a 

special form of finite element discretization where all elements 

are identical (hexahedral elements); the most important 

benefit of voxelization is meshing-robustness in that 

voxelization rarely fails unlike classic meshing. In addition, in 

FEA, voxelization significantly reduces memory foot-print 

since the element stiffness matrices are all identical; this 

directly translates into increased speed of analysis. However, a 

well-known challenge with voxelization is reduced accuracy, 

especially in stress prediction. This is addressed here through 

adaptive refinement where the mesh is refined in specific 

locations as needed. A unique advantage of this in transient 

simulation is that since the stress locations can change over 

time, the mesh only need to be refined in specific locations as 

needed, without sacrificing on speed. 

2. Assembly-Free: As stated earlier, we shall pursue assembly-

free analysis due to its inherent fine-grain parallelism. The 

voxel mesh is particularly well-suited for fast assembly-free 

analysis since a single element matrix is sufficient. However, 

one of the usual challenges in assembly-free iterative analysis 

is preconditioning/ deflation technique; here we rely on 

assembly-free deflation discussed next. 

3. Deflation: Deflation is a powerful acceleration technique for 

conjugate gradient [15], and is more amenable to an assembly-

free implementation, than classic preconditioners such as 

incomplete Cholesky. The particular method of deflation 

exploited in this paper is based on rigid-body agglomeration. 

4. Parallelization: Finally, given the above infrastructure, fine-

grain parallelization is achieved in this paper on multi-core 

CPUs using OpenMP, and on many-core GPUs, using 

NVIDIA’s CUDA language. Each of the above concepts is 

discussed in the following sections. 

Note that the above concepts are independent of each other; for 
example, one can apply deflation without imposing assembly-
free analysis. By combining all four complementary concepts, 
maximum computational benefits can be gained. 

 

Figure 2: An overview of the proposed method. 

3.1 Voxelization with Adaptive Refinement 

 As stated earlier, in this paper, we consider a simple finite 
element discretization, where the geometry is approximated via 
uniform hexahedral elements or ‘voxels’; the voxel-approach has 
gained significant popularity recently due to its robustness and 
low memory foot-print [16]. The voxelization of the geometry in 
Figure 1 is illustrated in Figure 3; it has over 300,000 elements. 
Fortunately, even such a large-size problem is easily handled via 
the proposed method. 

   
Figure 3: Brute-force voxelization of the structure in Figure 1. 

The voxelization of a triangulated CAD model, also referred to as 
3-D scan conversion, is straight-forward, and is discussed, for 
example, in [17]. The most significant benefits of voxelization are: 
(1) it is robust in that it rarely fails (unlike traditional meshing), 
(2) the mesh storage is compact, (3) the cost of voxelization is 
usually negligible and is relatively insensitive to geometric 
complexity, and (4) it promotes assembly-free-FEA. 

Typically, the downside of voxelization is that the stresses tend 
to be less accurate. We mitigate this through two strategies 
described below. 

Given a voxelization, one can choose a variety of hexahedral 
finite element shape functions. The simplest is the set of tri-

linear shape functions ( 1,...,8)
i

N i =  described in [18], where 

each node-based shape function is of the form: 

0.125(1 )(1 )(1 ); 1...8
i i i i

N iξ ξ η η ζ ζ= + + + =   (3.1) 

where
i
ξ , 

i
η , and 

i
ζ  ( 1,...,8)i =  are nodal coordinates in the 

reference domain and ξ , η , and ζ are respective coordinates of 

Gaussian quadrature points used to numerically evaluate shape 

functions ( 1,...,8)
i

N i = .  

However, the resulting 8-noded elements are ‘stiff’, and 
convergence is slow. One could use 20-node or 27-node 



 

elements, but this increases the memory requirements 
significantly.  

Instead we use the Wilson element endowed with three 

additional bubble-functions P  of the form of [19], [20]: 
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The resulting element stiffness matrix over domain Ω  are of the 
form:  
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One can condense out the bubble degrees of freedom, resulting 
again in a reduced 24 degrees of freedom element stiffness 
matrix [20]: 

 
11 12 22 21

( \ )
e

K K K K K= −   (3.5) 

This significantly improves the stress predictions without 
penalizing the computation since Equation (3.5) needs to be 
carried out once (for a single element). Similar condensation can 
be carried out for the mass element matrix. 

A second strategy that we adopt here is adaptive refinement 
through sub-modeling. Sub-modeling [2] (or local mesh 
refinement) is a classic idea in FEA where after a global problem 
is solved, one creates a higher-resolution mesh around regions of 
stress concentrations. The solution from the global mesh is 
enforced as “Dirichlet boundary condition” on the periphery of 
the local mesh, and a local analysis is carried out. As is well 
known, this simple strategy avoids the high cost of fine 
resolution at a global level, but delivers high accuracy. The same 
strategy is adopted here in that the mesh is refined near regions 
of stress concentrations (see Figure 4).  

 

(a)                                                     (b) 

Figure 4: (a) Stress concentration, and (b) local refinement. 

In particular, during transient analysis, the region of stress 
concentration can change over time (see Figure 5). To this end, 
at each time step, we find the critical locations, create the local 
fine mesh, and solve the local problems. Thus, the mesh only 

need to be refined in specific locations as needed, without 
sacrificing on speed. 

 

(a) 

 

(b) 

 

(c) 

Figure 5: The regions of stress concentration can change during 
transient analysis. (a) t = 1e-7 s (b) t = 1e-6 (c) t = 1e-5 

3.2 Assembly-Free FEA 

The advantages of a matrix-free analysis are: (1) memory 
requirements are obviously reduced, and therefore fine 
resolution transient analysis can be carried out, (2) memory 
reduction indirectly translates into increased computational 
speed [21], and (3) matrix-free multiplication is well suited for 
parallelization on multi-core architectures [12]. Melanz et al. 
(2013) [22] developed a matrix-free method to solve systems of 
very stiff systems of kinematically constrained problems using 
implicit integration with absolute nodal coordinates.  

Since our final goal here is to solve Equation (2.4), observe in 

Equation (1.3) that effK is a linear combination of K and M, 

therefore the element effective stiffness matrix
 

eff

e
K  can be 

computed as follows: 
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Considering Equation (2.6) and Equation (1.3), one can see that 
efff can be expressed in terms of Ku , Ku� , Ku�� , Mu , Mu� , and

Mu�� as follows: 
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Thus to compute the effective force at each time-step, one must 
carry out several sparse matrix-vector multiplications; these can 
be carried out in an assembly-free manner. 

 

3.3 Deflated Conjugate Gradient  

Deflation is a popular method for accelerating iterative methods 
such as conjugate gradient. The concept behind deflation [15] is 

to construct a matrix W , referred to as the deflation space, 
whose columns ‘approximately’ span the low eigen-vectors of the 
(effective) stiffness matrix.  

Since computing the eigen-vectors is obviously expensive, 
Adams and others [7], [23] suggested a simple agglomeration 
technique where finite element nodes are collected into small 
number of groups. For example, Figure 6 illustrates 
agglomeration of the finite element nodes into four groups. 

 

(a)                                                      (b) 

Figure 6: (a) Finite element mesh, (b) agglomeration of mesh 
nodes into four groups. 

As a step towards constructing the W  matrix, nodes within each 
group are collectively treated as a rigid body. The motivation is 
that these agglomerated rigid body modes mimic the low-order 
eigen-modes. Then displacement of each node within a group is 
expressed as: 
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where  

 { }0 0 0
, , , , ,

T

g x y z
u v wλ θ θ θ=                        (3.9) 

are the six unknown rigid body motions associated with the 

group, and ( , , )x y z  are the relative coordinates of the node with 

respect to the geometric center of the group. Observe that 
Equation (3.8) is essentially a restriction operation similar to 
that of multi-grid [24]. Once the mapping in Equation (3.8) is 
constructed for all the nodes, they can be ‘assembled’ to result in 

a deflation matrix W : 

 d Wλ=       (3.10) 

where d  is the 3N degrees of freedom (N: number of Nodes), λ  

is the 6G degrees of freedom associated with the groups (G: 

number of Groups). One can now exploit the W  matrix to create 
the deflated conjugate gradient (DCG) algorithm described 
below:  

Algorithm: Deflated CG (DCG); solve Kd f=  

1. Construct the deflation space W  

2. Choose 
0

d  where 
0

0TW r =  & 
0 0
r f Kd= −  

3. Solve 
0 0

T TW KW W Krµ = ; 
0 0 0
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4. 1j =  
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p Kp
α

− −
−

− −

=  

7.      
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8.      
1 1 1j j j j
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9.      
1
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T
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j T
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r r
β −
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10.       Solve 
T T

j j
W KW W Krµ =  for µ  

11.       
1 1j j j j j

p p r Wβ µ− −= + −  

12.       1j j= +  

13. End-Do While 

When N >> G, i.e., when the number of mesh nodes far exceeds 
the number of groups: 

• The primary computation is the sparse matrix-vector 

multiplication (SpMV) Kx  in steps 5 and 9.  

• Additional computations include the restriction operation 
TW x  in step 9, the prolongation Wµ  in step 10, and the 

solution of the linear system ( )TW KW yµ =  in step 9.  

The one-time coarse matrix TW KW  construction in step 3 can 

be viewed as a series of SpMV, followed by a series of restriction 

operations. Observe that the deflation matrix W is also sparse. 

3.4 Newmark Algorithm 

The algorithm is quite similar to classic Newmark-beta method 
for transient elasticity problems, and proceeds as follows. 

Algorithm: Assembly-Free Newmark  

For solving Mu Cu Ku f+ + =�� �  

1. Model the  geometry, voxelize, and set initial conditions 
2. Set material properties 

3. Compute 
e

K  and 
e

M  

4. Set Newmark coefficients ( ) & β γ       

Set damping coefficients ( ) & d dα β  

Set duration and step size ( ) & tT ∆   

5. 
2
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n
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a. Update eff ext C M

t t t t
f f f f

+∆ +∆
= + +  

b. Solve eff eff

t t t t
K u f

+∆ +∆
= using DCG (section 3.3) 



 

c. 

( )
( )2

1 1 1 2

2t t t t t t t
u u u u u

tt

β

β ββ
+∆ +∆

−
= − − −

∆∆
�� � ��  
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e. Compute strains and stresses; optionally, use a 
refined mesh for improved stress estimates 

7. End-While 

3.5 SpMV: CPU and GPU Parallelization 

In all our numerical studies, almost 80% of the computation 
time is spent in executing the assembly-free sparse matrix-vector 
multiplication (SpMV). We therefore focused our efforts on 
parallelization effort of SpMV. The parallelization algorithm is 
describe below 

Parallelization of y = K*x (SpMV) 

1. Compute a single element stiffness matrix Ke 

2. Assign a thread to each node 

3. For N = 1,2, …, #Nodes:   

a. Set y(3*N:3N+2) = 0 

b. For each element ‘e’ connected to node, Do 

i. Fetch the element vector xe 

ii. Perform ye = Ke * xe 

iii. Accumulate ye into y(3*N:3N+2) 

c. End-Do  

4. End-Do nodes 

On the CPU, assignment of threads was achieved through 
OpenMP commands (www.openmp.org). On the GPU, SpMV 
was parallelized using NVidia CUDA [25]. Other modules such 
as ‘vector dot-product’, etc., were also accelerated through 
OpenMP and CUDA commands.  

For larger problems, SpMV parallelization could perhaps be 
extended through message passing interface (MPI), but this was 
not explored in this work.  

4. NUMERICAL EXPERIMENTS  

In this Section, we present results from numerical experiments 
based on the proposed algorithm. All experiments were 
conducted on a Windows 7 64-bit machine with the following 
hardware: Intel Core i7 CPU running at 3.4GHz with 8 GB of 
memory, and a graphics card of GeForce GTX-760; 
parallelization on CPU and GPU were implemented through 
OpenMP and CUDA, respectively. 

For all experiments, the Newmark coefficients were: 
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The material properties are those of steel: 
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4.1 Impact of Assembly-free Analysis on Speed 

In the first experiment, we compare the proposed assembly-free 
deflated conjugate gradient (AF-DCG) against the popular 
commercial finite element software, ANSYS. The geometry is a 

steel cantilever beam of dimension 0.5 0.02 0.05× ×  (meters). A 

tip-force of one Newton is applied at 0t =  (and maintained 
thereafter) as illustrated in Figure 7. Two different mesh-sizes 
were used as described below. In ANSYS, the ‘Brick 8 node 185’ 
element was used, while the AF-DCG relies on the Wilson 
element described earlier.  

 
Figure 7: Deflected cantilever beam. 

The damping coefficients are 10( ); 5 4( )d ds E sα β−= = − ; the 

analysis time is 0.2 seconds, with 0.0005( )t s∆ = .  

In both implementations, with 8000 elements, the maximum 
deflection was reached at around 0.01 seconds, where: 

 max

max

5.88 6 (m)       (ANSYS)

5.92 6 (m)       (AF-DCG)

D E

D E

= −
= −

   (4.3)   

The slight difference can be attributed to the difference in the 
two shape functions used. It was confirmed through mesh 
refinement that the Wilson element used in this paper is more 
accurate.  

Figure 8 illustrates the transient response of the normalized tip 

displacement in ANSYS ( )max
5.88 6 (m)D E= − . 

 

Figure 8: Relative tip displacement (ANSYS) 

Figure 9 illustrates the corresponding displacement in AF-DCG.  
Both methods converged to the static deflection as expected

( )max
5.92 6 (m)D E= − . 



 

 
Figure 9: Relative tip displacement (AF-DCG) 

To compare the computational costs, the geometry was 
discretized using two different mesh sizes: 8000 elements and 
25000 elements. With each mesh size, four different solvers 
were considered (1) ANSYS-direct, (2) ANSYS-pre-conditioned 
conjugate gradient (PCG), (3) proposed AF-DCG on the CPU, 
and (4) proposed AF-DCG on the GPU (where SpMV is 
implemented on the GPU).  

Figure 10 compares the computational times. As one can observe, 
AF-DCG implementations are about seven times faster than 
ANSYS for the smaller mesh size, and about fifteen times faster 
for the larger mesh size.  

 

Figure 10: Run-time comparison of ANSYS vs. AF-DCG. 

4.2 Loss of Accuracy due to Voxelization 

Next, we compare the accuracy of the proposed method in 
capturing stresses. The geometry is illustrated in Figure 11; 
material properties are those of steel. A force of 5000 (N) was 

applied at time 0t = , and maintained thereafter. The total 

analysis time is 0.008 seconds with 0.00002( )t s∆ = ; the 

damping coefficients are 10( ); 2 5( )d ds E sα β−= = − . 

 

Figure 11: L-Bracket geometry (dimensions in mm) and loading.  

The geometry was discretized using 4,000 elements. Despite the 
fact that we rely on a non-conforming voxel-mesh (as opposed to 
a high-quality conforming mesh in ANSYS), the stress 
predictions at steady state are as follows: ANSYS predicts a 
stress of 445 MPa, SolidWorks predicts a stress of 448 MPa, 
while the proposed method estimates a stress of 425 MPa, i.e., 
an under prediction.  

Figure 12 illustrates the normalized maximum von Mises stress 
as a function of time for ANSYS, while Figure 13 illustrates the 
same for AF-DCG. 

 

Figure 12: Normalized stress for the L-bracket (ANSYS). 

               

Figure 13: Normalized stress for the L-bracket (AF-DCG). 



 

4.3 Advantages of Iterative Solvers over Direct  

While it is difficult to quantify the advantages of one class of 
solvers over another (since efficiency of solvers depend strongly 
on the problem, implementation, hardware, etc.), we present an 
example illustrating the computational cost (time taken) and 
memory consumed by direct and iterative solvers.  

Specifically, we solved a static finite element problem over the 
rocker illustrated in Figure 14a using SolidWorks 2014 [26], for 
various (quadratic tetrahedral) mesh densities. This problem 
was chosen since it contains thin sections that typically pose 
challenges to iterative solvers; the deformation of the rocker is 
illustrated in Figure 14b. 

 

Figure 14: Rocker problem: (a) Loading, and (b) displacement 

Figure 15 illustrates the time taken in seconds by the two solvers 
in SolidWorks. As one can observe, the direct solver takes about 
2 minutes to solve a million DOF problem, while the iterative 
solver requires less than 20 seconds.  

 

Figure 15: Time taken (secs) by SolidWorks 2014 [26] direct and 
iterative solvers, as a function of the degrees of freedom (DOF). 

Figure 16 illustrates the maximum memory required by the two 
solvers; the direct solver requires about 5 GBytes to solve a 
million DOF problem, while the iterative solver requires about 
0.6 GBytes.  Increased memory consumption directly leads to 
increased ‘computational’ time.  

 

Figure 16: Memory consumed by SolidWorks 2014 [26] direct 
and iterative solvers, as a function of degrees of freedom. 

4.4 Importance of Deflation 

Having established the superiority of iterative solvers, in this 
paper, we use a specific iterative solver, namely deflated 
conjugated gradient. The purpose of this experiment is to 
highlight the importance of deflation, especially for thin 
structures whose stiffness matrices are typically ill-conditioned.  

The geometry and loading were illustrated earlier in Figure 14. 
The geometry was discretized into 40000 hexahedral elements, 
and the transient analysis time was set to 0.0125 seconds while 

0.0001( )t s∆ = . 

The damping coefficients being 10( ); 2 5( )d ds E sα β−= = −  

Figure 17 illustrates the number of conjugate gradient iterations 
with and without deflation. DCG-16 implies that deflation with 
16 groups was used, while DCG-64 implies that deflation with 64 
groups was used.  

 

Figure 17: Faster convergence due to deflation. 

4.5 Robustness of Voxelization 

This experiment illustrates the robustness of voxelization. 
Consider the battery-holder in Figure 18; the small features 
present in the geometry can result in meshing-failure for a 
conforming mesh algorithm. A voxel-mesh is insensitive to such 
details since it only approximates the geometry up to the 
resolution of the mesh. The geometry was discretized using 
80,000 elements as illustrated earlier in Figure 3. A total step-
force of 1 N was applied on all the battery locations. 

 

Figure 18: Battery holder geometry with small features. 

The analysis time 0.04 seconds with a time step of 0.0001 ; the 

damping coefficients are 10( ); 0.0001( )d ds sα β−= =  

Figure 19 illustrates the battery holder’s relative stress through 
the analysis.  Figure 20 illustrates the run-times in CPU and 
GPU, i.e., a speed-up of approximately 2.5 was achieved through 
the implementation of SpMV on the GPU. 



 

 

Figure 19: Battery holder’s relative maximum stress. 

 

Figure 20: Battery holder: run-time comparison. 

4.6 Industrial Application of Proposed Method 

Electronic circuit boards undergo severe fatigue during shipping, 
and are usually geometrically complex. This makes them an ideal 
candidate for the present work. Here, we study the Arduino 
MEGA 2560 (Figure 21), a microcontroller widely used for R/C 
applications. The board was clamped at the four mounting holes, 
and a sinusoidal force was applied on one of the ICs.  

 
Figure 21: Arduino MEGO 2560. 

Since the model is highly detailed, the mesh required over 
300,000 voxels. The voxel mesh is illustrated in Figure 22. 

 

Figure 22: Arduino MEGA 2560: Voxel mesh. 

A typical displacement field is illustrated in Figure 23. 

 

Figure 23: Arduino MEGA 2560: Displacement field. 

The experiment was run both on CPU and GPU. The run-time on 
GPU is considerably smaller, which demonstrates the 
importance of fine-grain parallelization in large-scale problems. 

 

 

 Figure 24: PCB test. Run-time comparison of CPU and GPU. 

Figure 25 illustrates the normalized maximum Stress (at the 
fixed holes) through time.  



 

 
Figure 25: PCB test: normalized maximum stress 

5. CONCLUSIONS  

The main contribution of the paper is an efficient method for 
transient analysis of elastic systems based on the Newmark-beta 
algorithm.  As illustrated, the proposed method is sufficiently 
accurate for initial stages of design, and significantly faster than 
the commercial software ANSYS, at least for simple geometries 
of Figure 7 and Figure 11. Further comparisons for complicated 
geometries and other existing commercial methods is required 
to affirm the robustness and speed of this method. The software 
will be made available through the author’s research website 
www.ersl.wisc.edu.  This paper serves as a foundation for future 
work on: (1) ‘drop tests’, (2) fatigue modeling, and (3) crack 
initiation studies.  
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