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ABSTRACT

The primary computational bottle-neck in implicit structural
dynamics is the repeated inversion of the underlying stiffness
matrix. In this paper, a fast inversion technique is proposed by
merging four distinct but complementary concepts: (1)
voxelization with adaptive local refinement, (2) assembly-free
(a.k.a. matrix-free or element-by-element) finite element
analysis, (3) assembly-free deflated conjugate gradient, and (4)
multi-core parallelization. In particular, we apply these concepts
to the well-known Newmark-beta method, and the resulting
assembly-free deflated conjugate gradient (AF-DCG) is well-
suited for large-scale problems. It can be easily ported to many-
core CPU and multi-core GPU architectures, as demonstrated
through numerical experiments.

1. INTRODUCTION

The focus of this paper is on large-scale structural dynamics,
where one is interested in transient analysis of flexible and
geometrically complex elastic bodies such as the one in Figure 1.
Specifically, given an external force that varies over time, the
objective is to find the displacements, stresses, etc. within the
body, as a function of time. Transient analysis is critical, for
example, in impact studies, predicting fatigue-life, crack-
propagation studies, etc.

Figure 1: An example of transient analysis of a thin elastic
structure.

A standard approach to structural dynamics of flexible bodies is
to discretize the geometry via finite elements; this results in a
system of second order differential equations in time [1]

Mii + Ct + Ku = f* (1.1)

where:

n : Number of degrees of freedom
M, . :Mass matrix
C ., : Damping matrix
K :Stiffness matrix
nxn (1.2)

[+ External Force vector
: Displacement field
: Velocity field

: Acceleration field
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In this paper, without loss of generality, we shall assume
proportional damping;:

C=ao'M+ 3K (1.3)
where a" & 3 are the damping coefficients.

Equation (1.1) is typically solved through time-stepping, either
via an explicit or an implicit method. In explicit methods, the
solution at time ? is used to obtain the solution at ¢ + At . This,
as it turns out, entails the inversion of the mass matrix M [2] (by
inversion, we mean solving linear systems of equations governed
by the underlying matrix). Since M can often be diagonalized, its
inversion is trivial, leading to rapid time-stepping. However,
explicit methods are unstable for large time steps At .

On the other hand, implicit methods such as the Newmark-beta
method are unconditionally stable, but require the ‘inversion’ of
an effective stiffness matrix [1], a computationally demanding
task. In this paper, we explore a new method for fast ‘inversion’
of this stiffness matrix.

In Section 2 the Newmark-beta is summarized, followed by a
review of the literature relevant to this paper. In Section 3, the
proposed method is discussed, together with its CPU and GPU
implementation. Numerical experiments are presented in
Section 4. Conclusions and future work are covered in Section 5.

2. LITERATURE REVIEW

2.1 Newmark-beta Method

One of the most popular implicit methods in structural dynamics
is the Newmark-beta method. In 1959, Newmark formulated this
method [3] by introducing two numerical unit-less scalar

parameters ( and 7y (O <B<05,0<9< 1) . The desired

quantities at time ¢+ At are modeled as a function of the
quantities at time ¢ as follows:
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By substituting these into Equation (1.1), we obtain a simple
linear system:

eff _ peff
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where K and 7 are effective stiffness matrix and effective
force vector, respectively, where:
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As is typical, the effective stiffness matrix is assumed to be
symmetric positive-definite. In linear elasticity, the stiffness and
mass matrices remain constant throughout the analysis, and the
effective stiffness matrix needs to be computed only once.
However, the effective force vector must be updated at each time
step since it depends on the displacement, velocity, and
acceleration fields. In large-deformation models and in elasto-
plasticity, the effective stiffness matrix can change over time.

2.2 Direct and lterative Solvers: Tradeoff

Computationally, the most intensive task in the Newmark-beta
method is solving the linear system in Equation (2.4). Direct
solvers are robust, and rely on factoring the matrix, for example,
into a Cholesky decomposition:

K7 = LI 27)
This is followed by a triangular solve:
— T (7 el
Une = L (L )f AL (2.8)

In transient analysis, direct methods are particularly favorable
since the factorization needs to be carried just once.

However, due to the explicit factorization, direct solvers are
memory intensive. For example, to quote from the ANSYS
manual [4], “[sparse direct solver] is the most robust solver in
ANSYS, but it is also compute- and I/O-intensive”. Specifically,
for a matrix with one million degrees of freedom [4]:

e Approximately 1 GB of memory is needed for assembly.

e An additional 10 to 20 GB memory is needed for
factorization.

Since memory-access is often the bottle-neck in modern
computer architecture [5], this directly translates into increased
clock time. In other words, reducing memory usage is crucial
for large-scale problems.
Iterative solvers have low foot-print; they do not factorize the
stiffness matrix, but compute the solution iteratively. When the
stiffness matrix is symmetric and positive definite, the most
common iterative solver is the conjugate gradient [6]. In
iterative solvers:
1. The number of iterations must be minimized; this typically
achieved through an efficient preconditioner and/or through

multi-grid/deflation techniques. In this paper, we consider a
particular deflation technique proposed in [7].

2. Equally important is an efficient implementation of sparse
matrix-vector multiplication (SpMV). SpMV has drawn
considerable attention from several researchers. For example,
see [8] for an implementation of SpMV on graphics-
programmable units (GPUs). In this paper, we consider an
assembly-free implementation of SpMV.

In summary, one can conclude that, for large-scale implicit
structural dynamics:

e Tterative solvers scale better than direct methods; this is
illustrated through a numerical experiment in Section 4.

e  Preconditioning and/or multi-grid/deflation is important in
iterative techniques.

o Efficient SpMV and reducing memory foot-print will reduce
the computational cost per iteration.

e Exploiting multi-core architecture shows promise, but
hinges on building parallelization-friendly algorithms.

2.3 Assembly Free Finite Element Analysis

In classic FEA, the element matrices are typically assembled into
global matrices K & M . In this paper, we will apply assembly-
free FEA where neither K nor M are assembled/stored.
Instead, the fundamental matrix operations such as the sparse
matrix-vector multiplication (SpMV) are performed in an
assembly-free elemental level, i.e., an SpMV operation of Ku is
interpreted as follows:

Ku = Z (Keue) (29)
In other words, instead of assembling the global matrix, and
then carrying out SpMV, an element-vector multiplication is
carried, and then the results are assembled. This idea was first
proposed in 1983 [9], but has resurfaced due to the surge in fine-
grain parallelization.

Current research on assembly-free FEA can be grouped into
three categories: (1) developing effective preconditioners, (2)
extending the concept to a wider-class of problems, and (3) its
efficient implementation, for example, on multi-core graphics-
programmable units (GPU).

In the first category, Augarde et al. [10] developed an element
based displacement pre-conditioner for linear elasticity. To
accelerate convergence, Arbenz et al. [5] introduced a scalable
multi-level pre-conditioner for microstructural FEA. The
effectiveness of this preconditioner was demonstrated on finite
element models with millions of elements. Bellavia et al. (2013)
[11] introduced a matrix-free pre-conditioner for symmetric
positive definite systems that relies on partial Cholesky
factorization with deflation techniques. This was used for solving
sequences linear systems with different right-hand sides.

In the second category, Yadav et al. [12] used an assembly-free
method to perform large-scale modal analysis, and also
discussed its implementation on the GPU.

In the third category, Mueller et al. [13], presented a matrix-free
GPU implementation of a preconditioned CG solver for
anisotropic elliptic partial differential equations. In [14], the
performance of the GPU implementation of assembly-free FEA
using trilinear hexahedral elements, was compared against the
corresponding serial version run on a conventional processor for
various mesh sizes and sparse matrix storage schemes.



In this paper, we extend assembly free FEA to transient analysis,
propose an efficient deflation (preconditioning) technique, and
discuss its implementation on the GPU.

3. PROPOSED STRATEGY

In the present paper, a deflated implicit structural dynamics

method is developed by implementing and merging four distinct

but complementary concepts (see Figure 2). We shall discuss
each of these concepts in the following sections, but briefly:

1. Voxelization with Adaptive Refinement: Voxelization is a
special form of finite element discretization where all elements
are identical (hexahedral elements); the most important
benefit of voxelization is meshing-robustness in that
voxelization rarely fails unlike classic meshing. In addition, in
FEA, voxelization significantly reduces memory foot-print
since the element stiffness matrices are all identical; this
directly translates into increased speed of analysis. However, a
well-known challenge with voxelization is reduced accuracy,
especially in stress prediction. This is addressed here through
adaptive refinement where the mesh is refined in specific
locations as needed. A unique advantage of this in transient
simulation is that since the stress locations can change over
time, the mesh only need to be refined in specific locations as
needed, without sacrificing on speed.

2. Assembly-Free: As stated earlier, we shall pursue assembly-
free analysis due to its inherent fine-grain parallelism. The
voxel mesh is particularly well-suited for fast assembly-free
analysis since a single element matrix is sufficient. However,
one of the usual challenges in assembly-free iterative analysis
is preconditioning/ deflation technique; here we rely on
assembly-free deflation discussed next.

3. Deflation: Deflation is a powerful acceleration technique for
conjugate gradient [15], and is more amenable to an assembly-
free implementation, than classic preconditioners such as
incomplete Cholesky. The particular method of deflation
exploited in this paper is based on rigid-body agglomeration.

4. Parallelization: Finally, given the above infrastructure, fine-
grain parallelization is achieved in this paper on multi-core
CPUs using OpenMP, and on many-core GPUs, using
NVIDIA’s CUDA language. Each of the above concepts is
discussed in the following sections.

Note that the above concepts are independent of each other; for
example, one can apply deflation without imposing assembly-
free analysis. By combining all four complementary concepts,
maximum computational benefits can be gained.

Voxelization w/
Refinement

vonvifaq

Assembly-Free

2

Parallelization

Figure 2: An overview of the proposed method.

3.1 Voxelization with Adaptive Refinement

As stated earlier, in this paper, we consider a simple finite
element discretization, where the geometry is approximated via
uniform hexahedral elements or ‘voxels’; the voxel-approach has
gained significant popularity recently due to its robustness and
low memory foot-print [16]. The voxelization of the geometry in
Figure 1 is illustrated in Figure 3; it has over 300,000 elements.
Fortunately, even such a large-size problem is easily handled via
the proposed method.

Figure 3: Brute-force voxelization of the structure in Figure 1.

The voxelization of a triangulated CAD model, also referred to as
3-D scan conversion, is straight-forward, and is discussed, for
example, in [17]. The most significant benefits of voxelization are:
(1) it is robust in that it rarely fails (unlike traditional meshing),
(2) the mesh storage is compact, (3) the cost of voxelization is
usually negligible and is relatively insensitive to geometric
complexity, and (4) it promotes assembly-free-FEA.

Typically, the downside of voxelization is that the stresses tend
to be less accurate. We mitigate this through two strategies
described below.

Given a voxelization, one can choose a variety of hexahedral
finite element shape functions. The simplest is the set of tri-

linear shape functions N,(i =1,...,8) described in [18], where

each node-based shape function is of the form:

N = 01251+ €61 +nn)1+¢Q)i =1...8 (3.1

where § , 7, and ¢ (i=1,...,8) are nodal coordinates in the
reference domain and £, 77, and ( are respective coordinates of
Gaussian quadrature points used to numerically evaluate shape
functions N,(i=1,...,8).

However, the resulting 8-noded elements are ‘stiff, and
convergence is slow. One could use 20-node or 27-node



elements, but this increases the memory requirements
significantly.

Instead we use the Wilson element endowed with three
additional bubble-functions P of the form of [19], [20]:

P1(£7777C) = (1_52)
P(&n.¢)=1-n") (3.2)
P3(€a7]ac) = (1 _CQ)

The resulting element stiffness matrix over domain € are of the
form:

_ [k, K
K — 11 12 (3.3)
' ’Km Kzz]
where
K, = [ VN"DVNdS)
K, = [VN"DVPi0 5a)

K, = [VP'DVNdQ
K, = [VP'DVPdS

One can condense out the bubble degrees of freedom, resulting
again in a reduced 24 degrees of freedom element stiffness
matrix [20]:

K =K, - K12(K22 \ K21) (3-5)

This significantly improves the stress predictions without
penalizing the computation since Equation (3.5) needs to be
carried out once (for a single element). Similar condensation can
be carried out for the mass element matrix.

A second strategy that we adopt here is adaptive refinement
through sub-modeling. Sub-modeling [2] (or local mesh
refinement) is a classic idea in FEA where after a global problem
is solved, one creates a higher-resolution mesh around regions of
stress concentrations. The solution from the global mesh is
enforced as “Dirichlet boundary condition” on the periphery of
the local mesh, and a local analysis is carried out. As is well
known, this simple strategy avoids the high cost of fine
resolution at a global level, but delivers high accuracy. The same
strategy is adopted here in that the mesh is refined near regions
of stress concentrations (see Figure 4).

need to be refined in specific locations as needed, without
sacrificing on speed.

()

(©

Figure 5: The regions of stress concentration can change during
transient analysis. (a) t = 1e-7s (b) t = 1e-6 (¢) t = 1e-5

(@ (®)

Figure 4: (a) Stress concentration, and (b) local refinement.

In particular, during transient analysis, the region of stress
concentration can change over time (see Figure 5). To this end,
at each time step, we find the critical locations, create the local
fine mesh, and solve the local problems. Thus, the mesh only

3.2 Assembly-Free FEA

The advantages of a matrix-free analysis are: (1) memory
requirements are obviously reduced, and therefore fine
resolution transient analysis can be carried out, (2) memory
reduction indirectly translates into increased computational
speed [21], and (3) matrix-free multiplication is well suited for
parallelization on multi-core architectures [12]. Melanz et al.
(2013) [22] developed a matrix-free method to solve systems of
very stiff systems of kinematically constrained problems using
implicit integration with absolute nodal coordinates.

Since our final goal here is to solve Equation (2.4), observe in
Equation (1.3) that K is a linear combination of K and M,
therefore the element effective stiffness matrix K:ff can be

computed as follows:

of _
K" =

Bh| © |pAE  BAL) ¢ (3.6)

Considering Equation (2.6) and Equation (1.3), one can see that
" can be expressed in terms of Ku , Ku , Kii , Mu , M4 , and
M as follows:
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Thus to compute the effective force at each time-step, one must
carry out several sparse matrix-vector multiplications; these can
be carried out in an assembly-free manner.

3.3 Deflated Conjugate Gradient

Deflation is a popular method for accelerating iterative methods
such as conjugate gradient. The concept behind deflation [15] is
to construct a matrix W , referred to as the deflation space,
whose columns ‘approximately’ span the low eigen-vectors of the
(effective) stiffness matrix.

Since computing the eigen-vectors is obviously expensive,
Adams and others [7], [23] suggested a simple agglomeration
technique where finite element nodes are collected into small
number of groups. For example, Figure 6 illustrates
agglomeration of the finite element nodes into four groups.

Algorithm: Deflated CG (DCG); solve Kd = f

(b)

Figure 6: (a) Finite element mesh, (b) agglomeration of mesh
nodes into four groups.

As a step towards constructing the W matrix, nodes within each
group are collectively treated as a rigid body. The motivation is
that these agglomerated rigid body modes mimic the low-order
eigen-modes. Then displacement of each node within a group is
expressed as:

U 100 0 =z —y
vr=|0 1 0 —2z2 0 =z )\g (3.8)
w 001 »y —2z O
where
T
A, = {u,0,0,0,.0.,0 } (3.9)

are the six unknown rigid body motions associated with the
group, and (z,y,z) are the relative coordinates of the node with
respect to the geometric center of the group. Observe that
Equation (3.8) is essentially a restriction operation similar to
that of multi-grid [24]. Once the mapping in Equation (3.8) is
constructed for all the nodes, they can be ‘assembled’ to result in
a deflation matrix W :

d=W\ (3.10)

where d is the 3N degrees of freedom (N: number of Nodes), A
is the 6G degrees of freedom associated with the groups (G:
number of Groups). One can now exploit the W matrix to create
the deflated conjugate gradient (DCG) algorithm described
below:

1. Construct the deflation space W
2. Choose d, where W'r, =0 & r, = f — Kd,

T T
Solve W KWy, =W Kr; p, =1 —Wu,
4. j=1
5. While "7}—1" >¢,do:

TT T

6. o, =—2lo

' T Kp

1P

7- d=d  +a.p,

8. n=r oK
N

9 Bin ==

il

10.  Solve WKWy, =W'Kr, for

1. p,=0.p, 1 - Wy
12. j=j+1
13. End-Do While
When N >> G, i.e., when the number of mesh nodes far exceeds
the number of groups:
e The primary computation is the sparse matrix-vector
multiplication (SpMV) Kz in steps 5and 9.
e Additional computations include the restriction operation

W'z in step 9, the prolongation Wy in step 10, and the
solution of the linear system (W™ KW)u =y in step 9.

The one-time coarse matrix W” KW construction in step 3 can
be viewed as a series of SpMV, followed by a series of restriction
operations. Observe that the deflation matrix W is also sparse.

3.4 Newmark Algorithm

The algorithm is quite similar to classic Newmark-beta method
for transient elasticity problems, and proceeds as follows.

Algorithm: Assembly-Free Newmark
For solving Mii+ Ci+ Ku = f

1.  Model the geometry, voxelize, and set initial conditions
2. Set material properties
3. Compute K and M,
4. Set Newmark coefficients (ﬂ & 7)
Set damping coefficients (ad & 5")
Set duration and step size (T & At)
d d
5. KT =|1425 |k 4|1 2%y
‘ Bh | © |BAE  BAt]
6. While ¢t <T,do:
a. Update /¥ =f“ . +f"+f"

b. Solve KW“;H/ = f‘///Hl using DCG (section 3.3)



c. U =#<u fu)fizl fﬂﬂ
1+t ﬁ(At)z t+At t BAt t 23 t
d. u1+A1 = ul + At[(li 7)1./:1 + fydum

e. Compute strains and stresses; optionally, use a
refined mesh for improved stress estimates
7. End-While

3.5 SpMV: CPU and GPU Parallelization

In all our numerical studies, almost 80% of the computation
time is spent in executing the assembly-free sparse matrix-vector
multiplication (SpMV). We therefore focused our efforts on
parallelization effort of SpMV. The parallelization algorithm is
describe below

tip-force of one Newton is applied at ¢t =0 (and maintained
thereafter) as illustrated in Figure 7. Two different mesh-sizes
were used as described below. In ANSYS, the ‘Brick 8 node 185’
element was used, while the AF-DCG relies on the Wilson
element described earlier.

Figure 7: Deflected cantilever beam.

Parallelization of y = K*x (SpMYV)

1. Compute a single element stiffness matrix Ke
2. Assign a thread to each node
3. ForN=1,2, ..., #Nodes:
a. Sety(3*N:3N+2) =0
b. For each element ‘e’ connected to node, Do
i. Fetch the element vector xe
ii. Perform ye = Ke * Xe
iii. Accumulate ye into y(3*N:3N+2)
c¢. End-Do
4. End-Do nodes

The damping coefficients are o = 0(s');3" = 5E — 4(s) ; the
analysis time is 0.2 seconds, with At = 0.0005(s) .

In both implementations, with 8000 elements, the maximum
deflection was reached at around 0.01 seconds, where:
D =588E—6 (m) (ANSYS) (4.3)
D =592F—6 (m) (AF-DCG) 43

max

The slight difference can be attributed to the difference in the
two shape functions used. It was confirmed through mesh
refinement that the Wilson element used in this paper is more
accurate.

Figure 8 illustrates the transient response of the normalized tip

ma

On the CPU, assignment of threads was achieved through
OpenMP commands (www.openmp.org). On the GPU, SpMV
was parallelized using NVidia CUDA [25]. Other modules such
as ‘vector dot-product’, etc., were also accelerated through
OpenMP and CUDA commands.

For larger problems, SpMV parallelization could perhaps be
extended through message passing interface (MPI), but this was
not explored in this work.

4. NUMERICAL EXPERIMENTS

In this Section, we present results from numerical experiments
based on the proposed algorithm. All experiments were
conducted on a Windows 7 64-bit machine with the following
hardware: Intel Core i7 CPU running at 3.4GHz with 8 GB of
memory, and a graphics card of GeForce GTX-760;
parallelization on CPU and GPU were implemented through
OpenMP and CUDA, respectively.

For all experiments, the Newmark coefficients were:
v=0.5
6=0.25
The material properties are those of steel:
E =2.1el1(N / m?)
v =0.28 (4.2)
p = T700(kg / m*)

(4.1

4.1 Impact of Assembly-free Analysis on Speed

In the first experiment, we compare the proposed assembly-free
deflated conjugate gradient (AF-DCG) against the popular
commercial finite element software, ANSYS. The geometry is a
steel cantilever beam of dimension 0.5 x0.02x0.05 (meters). A

displacement in ANSYS (D, = 5.885 —6 (m)) .

ANSYS

R14.5
Academic

D/Dmax g

0 2 .4 .6 .8 1
A .3 .5 7 .9
T/Tmax

Figure 8: Relative tip displacement (ANSYS)

Figure 9 illustrates the corresponding displacement in AF-DCG.
Both methods converged to the static deflection as expected

(D, =5.92E—6 (m)).

m:
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Figure 9: Relative tip displacement (AF-DCG)

To compare the computational costs, the geometry was
discretized using two different mesh sizes: 8000 elements and
25000 elements. With each mesh size, four different solvers
were considered (1) ANSYS-direct, (2) ANSYS-pre-conditioned
conjugate gradient (PCG), (3) proposed AF-DCG on the CPU,
and (4) proposed AF-DCG on the GPU (where SpMV is
implemented on the GPU).

Figure 10 compares the computational times. As one can observe,
AF-DCG implementations are about seven times faster than
ANSYS for the smaller mesh size, and about fifteen times faster
for the larger mesh size.

Beam - Run-time comparison
2500

2000

1500

Time (s)

1000

500

21.77 68.74 24.01 53.8
1] R i | e FPTFFTA
ANSYS-Direct ANSYS-PCG AF-DCG (CPU) AF-DCG(GPU)

H 3000 E25000

Figure 10: Run-time comparison of ANSYS vs. AF-DCG.

4.2 Loss of Accuracy due to Voxelization

Next, we compare the accuracy of the proposed method in
capturing stresses. The geometry is illustrated in Figure 11;
material properties are those of steel. A force of 5000 (N) was
applied at time ¢ =0, and maintained thereafter. The total
analysis time is 0.008 seconds with At =0.00002(s) ; the

damping coefficients are o’ = 0(s™'); 3 = 2E — 5(s) .

Figure 11: L-Bracket geometry (dimensions in mm) and loading.

The geometry was discretized using 4,000 elements. Despite the
fact that we rely on a non-conforming voxel-mesh (as opposed to
a high-quality conforming mesh in ANSYS), the stress
predictions at steady state are as follows: ANSYS predicts a
stress of 445 MPa, SolidWorks predicts a stress of 448 MPa,
while the proposed method estimates a stress of 425 MPa, i.e.,
an under prediction.

Figure 12 illustrates the normalized maximum von Mises stress

as a function of time for ANSYS, while Figure 13 illustrates the
same for AF-DCG.

e ANSYS
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Figure 12: Normalized stress for the L-bracket (ANSYS).
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Figure 13: Normalized stress for the L-bracket (AF-DCG).




4.3 Advantages of Iterative Solvers over Direct

While it is difficult to quantify the advantages of one class of
solvers over another (since efficiency of solvers depend strongly
on the problem, implementation, hardware, etc.), we present an
example illustrating the computational cost (time taken) and
memory consumed by direct and iterative solvers.

Specifically, we solved a static finite element problem over the
rocker illustrated in Figure 14a using SolidWorks 2014 [26], for
various (quadratic tetrahedral) mesh densities. This problem
was chosen since it contains thin sections that typically pose
challenges to iterative solvers; the deformation of the rocker is
illustrated in Figure 14b.

Figure 16: Memory consumed by SolidWorks 2014 [26] direct
and iterative solvers, as a function of degrees of freedom.

Figure 14: Rocker problem: (a) Loading, and (b) displacement

4.4 Importance of Deflation

Having established the superiority of iterative solvers, in this
paper, we use a specific iterative solver, namely deflated
conjugated gradient. The purpose of this experiment is to
highlight the importance of deflation, especially for thin
structures whose stiffness matrices are typically ill-conditioned.

The geometry and loading were illustrated earlier in Figure 14.
The geometry was discretized into 40000 hexahedral elements,
and the transient analysis time was set to 0.0125 seconds while
At = 0.0001(s) .

The damping coefficients being o = 0(s™'); 3" = 2E — 5(s)

Figure 17 illustrates the number of conjugate gradient iterations
with and without deflation. DCG-16 implies that deflation with
16 groups was used, while DCG-64 implies that deflation with 64
groups was used.

Figure 15 illustrates the time taken in seconds by the two solvers
in SolidWorks. As one can observe, the direct solver takes about
2 minutes to solve a million DOF problem, while the iterative
solver requires less than 20 seconds.

Direct vs. iterative (Run-time)

= Direct

Time (s)

= [terative

# DOF

Figure 15: Time taken (secs) by SolidWorks 2014 [26] direct and
iterative solvers, as a function of the degrees of freedom (DOF).
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Figure 17: Faster convergence due to deflation.

4.5 Robustness of Voxelization

This experiment illustrates the robustness of voxelization.
Consider the battery-holder in Figure 18; the small features
present in the geometry can result in meshing-failure for a
conforming mesh algorithm. A voxel-mesh is insensitive to such
details since it only approximates the geometry up to the
resolution of the mesh. The geometry was discretized using
80,000 elements as illustrated earlier in Figure 3. A total step-
force of 1 N was applied on all the battery locations.

Figure 16 illustrates the maximum memory required by the two
solvers; the direct solver requires about 5 GBytes to solve a
million DOF problem, while the iterative solver requires about
0.6 GBytes. Increased memory consumption directly leads to
increased ‘computational’ time.

Direct vs. iterative (memory usage)
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Figure 18: Battery holder geometry with small features.

The analysis time 0.04 seconds with a time step of 0.0001; the
damping coefficients are o’ = 0(s™'); 3" = 0.0001(s)

Figure 19 illustrates the battery holder’s relative stress through
the analysis. Figure 20 illustrates the run-times in CPU and
GPU, i.e., a speed-up of approximately 2.5 was achieved through
the implementation of SpMV on the GPU.
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A typical displacement field is illustrated in Figure 23.

Figure 19: Battery holder’s relative maximum stress.

Battery Holder - Run-Time Comparison
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Figure 23: Arduino MEGA 2560: Displacement field.
Figure 20: Battery holder: run-time comparison. The experiment was run both on CPU and GPU. The run-time on
- . GPU is considerably smaller, which demonstrates the
4.6 Industrial Application of Proposed Method importance of fine-grain parallelization in large-scale problems.
Electronic circuit boards undergo severe fatigue during shipping,
and are usually geometrically complex. This makes them an ideal
candidate for the present work. Here, we study the Arduino PCB - Run-Time Comparison
MEGA 2560 (Figure 21), a microcontroller widely used for R/C 5000
applications. The board was clamped at the four mounting holes, 500 4432
and a sinusoidal force was applied on one of the ICs. 2000
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1500
1000
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Figure 24: PCB test. Run-time comparison of CPU and GPU.

Figure 25 illustrates the normalized maximum Stress (at the
fixed holes) through time.

Figure 21: Arduino MEGO 2560.

Since the model is highly detailed, the mesh required over
300,000 voxels. The voxel mesh is illustrated in Figure 22.
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Figure 25: PCB test: normalized maximum stress

5. CONCLUSIONS

The main contribution of the paper is an efficient method for
transient analysis of elastic systems based on the Newmark-beta
algorithm. As illustrated, the proposed method is sufficiently
accurate for initial stages of design, and significantly faster than
the commercial software ANSYS, at least for simple geometries
of Figure 7 and Figure 11. Further comparisons for complicated
geometries and other existing commercial methods is required
to affirm the robustness and speed of this method. The software
will be made available through the author’s research website
www.ersl.wisc.edu. This paper serves as a foundation for future
work on: (1) ‘drop tests’, (2) fatigue modeling, and (3) crack
initiation studies.
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