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ABSTRACT* 
A salient feature of additive manufacturing is that the cost of 
fabrication, to a large extent, is independent of geometric 
complexity. This opens new opportunities for custom-designing 
parts both at a macro and micro-level. An elegant and powerful 
method of designing custom-parts is through topology 
optimization. 
While the theory of topology optimization is well understood, 
current methods can be extraordinarily expensive. The focus of 
this paper is on efficient microstructural topology optimization 
for 3d-printing. In particular, the computational bottle-necks in 
microstructural topology optimization are identified. Then, a 
framework that not only eliminates these bottle-necks, but 
incorporates other significant improvements, is developed.  The 
framework is demonstrated through numerical experiments 
involving microstructures with millions of degrees of freedom, 
using multi-core CPUs and NVidia GPU. 

1. INTRODUCTION 

 The most significant benefit of additive manufacturing is that 
geometric-complexity is 'free', i.e., to a large extent, it costs no 
more time or money to fabricate a very complicated part than it 
takes to fabricate a simple one. This opens new opportunities in 
product design; specifically, one can exploit modern topology 
optimization methods [1], [2] to translate problem-specifications 
into optimal, but perhaps complex, topologies, and then directly 
fabricate these through 3d-printing (see Figure 1). The 
optimality of the design in Figure 1 ensures that the least amount 
of material is used, translating into reduced fabrication time. 

       
Figure 1: From problem specification to optimal part. 

While Figure 1 exemplifies topology optimization at a macro-
scale, one can go further in optimizing the topology at a micro-
scale. Microstructural design [3]–[7] can be viewed as a special 
case of topology optimization [1], [2] where the objective is to 

 

 

find the distribution of one or more materials that would result 
in a desired microscopic behavior. For example, Figure 2 
illustrates the concept of optimizing both the macro-level 
geometry, and localized micro-level structure to meet a desired 
objective. Current 3d-printing processes can typically achieve a 
100 micron resolution (or less), and thus the optimal multi-scale 
structure illustrated can potentially be fabricated.  

           
Figure 2: Optimal microstructural design. 

Through microstructural optimization, one can create 
surprisingly unique behavior at the macro-level; a classic 
example is that of negative Poisson-ratio bolt-design [8].  
Microstructural design can be generalized to the distribution of 
multiple materials [9]. For example, consider the Lawrence 
Livermore National Lab (https://manufacturing.llnl.gov/) 
concept in Figure 3 of a limited thermal expansion body-armor; 
this concept is specifically designed to exploit the capabilities of 
3d-printing.  

       
Figure 3: LLNL’s concept for a tailored micro-structure 

(https://manufacturing.llnl.gov/) 
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Unfortunately, an efficient infrastructure for computing such 
optimal microstructures is lacking. Current methods of 
microstructural optimization can be extraordinary expensive; for 
example, to quote a recent paper on microstructural design [7] 
“[for 3 million degrees of freedom] … an optimization run with 
1000 iterations takes approximately 10 h on 120 CPU cores”. 
This can be detrimental to the integration of microstructural 
design into mainstream engineering and 3d-printing-driven 
applications. 
The main focus of this paper is efficient microstructural design 
to support current and future needs of 3d-printing. Since 
microstructure design fundamentally rests on the concept of 
homogenization, current homogenization methods are reviewed 
in Section 2, followed by a review of current methods for 
microstructural optimization. The reasons for the high 
computational cost are also identified in this Section. Then, in 
Section 3, a simple but efficient topological sensitivity [10] based 
level-set method is proposed. In Section 4, numerical results are 
presented, followed by conclusions and open issues in Section 5.  

2. LITERATURE REVIEW 

2.1 Homogenization 
In microstructural design, a common hypothesis is that the 
microstructure is locally periodic. For example, Figure 5a 
illustrates a locally periodic microstructure with identical unit 
cells repeated spatially. Two unit cells, a.k.a. Representative 
Volume Elements (RVEs), are illustrated in Figure 5b. 

            
Figure 4: (a) Periodic microstructure, (b) two unit cells. 

Given a unit cell, the ‘forward’ problem is to find its 
homogenized elasticity tensor 


 [11]. The theory of 

homogenization rests on five fundamental principles: (1) strain-
averaging, (2) stress-averaging, (3) displacement-assumptions 
consistent with strain-averaging, (4) micro-structural 
equilibrium, and (5) Hill-Mandel principle of energy consistency. 
These principles are discussed in detail, for example, in [12], [13]. 
The theory of homogenization directly leads to computational 
strategies. For example, a popular strategy for computing   
(associated with a unit-cell) is to impose six-independent 
periodic boundary conditions, and solve the resulting six finite 
element problems [14]. The tensor   is then computed by 
averaging the resulting stresses. An alternate strategy is 
discussed later in the paper.  

2.2 Microstructural Design 
Microstructural design, on the other hand, is an ‘inverse’ 
problem where the challenge lies in finding an optimal 
distribution of voids that would result in a desired tensor  .  
The pioneering works of several authors [8], [15]–[17] 
demonstrated that it is possible to design microstructures with 
desired properties, such as materials with negative Poisson ratio. 
The first systematic approach to designing microstructures was 
proposed by Sigmund [3], where microstructural topology was 

captured through discrete structural elements, and then 
optimized. 
The modern approach towards microstructural optimization is 
to combine continuum finite element analysis, and a topology 
optimization technique such as Solid Isotropic Material with 
Penalization (SIMP) or level-set. 
In SIMP-based microstructural design, pseudo-density 
parameters are assigned to finite-elements, and these 
parameters are directly linked to material properties, and 
optimized [7], [18]. The primary advantages of SIMP are that the 
theoretical derivation is simple, and the implementation is 
straightforward. Indeed, most of the recent advances on 
microstructural design  are based on SIMP [5], [19].  
However, in SIMP-based topology optimization [11], the 
sensitivity is less accurate since it is computed by differentiating 
the discretized global stiffness matrix with respect to the density 
parameters. The more serious challenge is that the finite element 
stiffness matrices become ill-conditioned in the presence of low 
pseudo-density values [20], [21].  As noted by several authors [7], 
[22], [21], since direct solvers are impractical for large scale 
problems, one must rely on iterative solvers, that exhibit poor 
convergence for such ill-conditioned problems. 
We therefore pursue an alternate optimization strategy based on 
the concept of topological sensitivity. Topological sensitivity 
captures the first order impact of topological changes within a 
domain on various quantities of interest. This concept has its 
roots in the influential paper by Eschenauer [23], and has later 
been extended and explored by numerous authors [10], [24]–[27] 
including generalization to arbitrary features [28]–[30].  
Topological sensitivity can be computed analytically as opposed 
to a semi-discrete formulation used in SIMP. In particular, for 
micro-structural design, the authors of [13] developed closed-
form expressions for topological sensitivity of the tensor  . This 
was exploited in [31] for 2D microstructural design, and in [4] 
for 3D microstructural design. 
In the above two implementations, the evolving voids within the 
microstructure were represented using an artificial material with 
low Young’s modulus. This once again leads to high-condition 
number of the stiffness matrices … a barrier to fast iterative 
analysis.  
Here, we exploit the concept of topological sensitivity to avoid 
the pseudo-density challenges. In addition, the proposed 
method is designed to trace certain pareto-optimal curves (see 
next Section); this has numerous implications: (1) the 
underlying stiffness matrix is always well-conditioned, leading to 
fast iterative solutions, (2) the voids can be excluded from the 
finite element model without resulting in singularity, leading to 
shrinking matrix size, and (3) multi-fold symmetry can be 
imposed and exploited during the optimization process, leading 
to faster computation.  

3. PROPOSED METHOD  

3.1 Background: The PareTO Method 
The proposed method for microstructural design builds upon the 
PareTO method described in [21], [32]. PareTO rests on the 
concept of topological sensitivity [10], [25], [29], [33]. To 
illustrate this concept, consider the 2D structural problem in 
Figure 6a where the objective is to find the optimal topology of a 
desired volume fraction with minimal compliance.  
Consider now inserting a small hypothetical hole, i.e., modifying 
the topology, as illustrated in Figure 6b. Topological sensitivity 
is the expected change in any quantity of interest due to this 
topological change.  

 



          
(a) Structural problem.                  (b) Topological change. 
Figure 5: The main concept of topological level-set. 

If the quantity of interest is compliance, one can show that 
topological sensitivity (TS) field in 2-D is given by [34]: 
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The above field can be interpreted as a level-set as illustrated in 
Figure 7a. By ‘slicing’ the level-set at an appropriate heightτ , 
one can extract topologies of desired volume fraction, as 
illustrated in Figure 7b. Similar topological level-sets can be 
computed in 3-D, and for various other quantities of interest 
[28].          

 
(a) Topological sensitivity field.      

 
(b) Domain extracted  

Figure 6: The main concept of topological level-set. 

The unique feature of PareTO is that it traces the pareto-optimal 
curve governing the desired objective (example: compliance) and 
the volume fraction, as illustrated in Figure 8; each of the steps 
is described below.  

 
Figure 7: PareTO topology optimization algorithm. 

1. Start with DΩ = , i.e., start with a volume fraction of 1.0. 
Observe that this is different from SIMP, where a constant 
density ρ  is assigned to the design-space D  such that the 
‘apparent’ volume fraction 0v . The cutting-plane parameter  
τ  is initialized to zero. 

2. Next, a finite element analysis is carried out on D  and the 
topological sensitivity field, corresponding to the quantity of 
interest, is computed. 

3. If the desired volume fraction has been reached, the iso-
surface with the current cutting-plane value τ  is extracted. 
For iso-surface extraction, the classic marching-cubes 
algorithm described in [35] is used, where the topological 
sensitivity values at the corner nodes of the hex mesh are 
used to extract the iso-surface. 

4. (Else) The current volume fraction is decremented by v∆ ; 
v∆  is initialized to 0.05, and this is controlled in an 

adaptive fashion (see step 8 below). 
5. Given the current topological sensitivity field and the target 

volume fraction, we seek the parameter τ  such that the 
volume of the extracted from the iso-surface is equal to the 
target volume fraction. This is a simple binary-search 
algorithm.  

6. Once the desired value of τ  has been computed, a finite 
element analysis is carried out on the extracted topology. 
Elements that lie outside are not included in the FEA (see 
discussion below) and, the topological sensitivity field is 
recomputed. 

7. If the τ  value has converged (to within user defined 
accuracy) return to Step-3. If the parameter has not yet 
converged, return to Step 5, after performing the check 
below to ensure that the optimization process is not 
diverging.  

8. If a very large step size v∆  is specified, the above process 
may diverge. If this is detected (by diverging values of 
compliance), the value of v∆  is reduced by a factor of 2, 
prior to returning to Step 5. 

 



Figure 9 illustrates the pareto-optimal curve traced and a set of 
optimal topologies computed. The optimization process starts at 
a volume-fraction of 1 (at the bottom right), and the pareto-
optimal curve is traced in small decrements of volume fractions. 
Since the intermediate topologies lie on the pareto-curve, the 
structure is always connected during the optimization process, 
and the finite element analysis does not result in a singularity. 

 
Figure 8: The pareto-optimal curve and topologies. 

During the optimization, the ‘out-elements’ are not included in 
the finite element analysis. However, these are allowed (and may) 
reenter the optimization process as follows. Consider Figure 10a 
where the ‘in’ and ‘out’ elements within the current topology are 
identified; once the topological sensitivities over the ‘in’ 
elements are computed, the sensitivities at all nodes (see Figure 
10b) are computed by averaging the element sensitivities. Finally, 
prior to the next iteration, an extrapolation procedure is used to 
predict the topological sensitivities over the ‘out’ elements that 
are adjacent to the boundary (see Figure 10c). This provides a 
simple mechanism for the ‘out’ elements to enter the 
optimization process. 

(a) In-elements. (b) Nodal field. (c) Field over ‘out’ elements 
Figure 9: Estimating topological sensitivity over ‘out’ elements 

3.2 Microstructural Design 
In microstructural design, these pareto-curves correspond 
precisely to the Hashin-Shtrikman curves [4], [11], [36], where 
the x-axis corresponds to the volume fraction, and y-axis 
corresponds to one of the microstructural objectives, such as 
bulk-modulus or shear-modulus. For example, it is well known 
that the upper limit on the bulk-modulus as a function of the 
volume fraction    is given by [36] 
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while the upper limit on the shear modulus is given by: 
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where K & G are the material bulk and shear modulus 
respectively. Figure 11, for example, illustrates the Hashin-
Shtrikman (pareto-optimal) curve for bulk-modulus. 

Given the similarity in concept between Figure 9  and Figure 11, 
the objective of this paper is to extend the PareTO method for 
directly tracing the Hashin-Shtrikman curves.  

 
Figure 10: The Hashin-Shtrikman curve for bulk modulus. 

3.3 Microstructural Discretization  
For the purpose of finite element analysis, the microstructure is 
discretized into uniform-sized hexahedral elements, i.e., voxels, 
equipped with tri-linear shape functions. As the optimization 
progresses, voxels are either deleted from, or inserted into the 
mesh, via the topological level-set, as described later. Figure 12 
illustrates two instances of the voxel-mesh.  

  
Figure 11: Initial and an intermediate microstructure voxel mesh. 
As stated earlier, the underlying material is assumed to be linear 
isotropic, where the material tensor is given by: 
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The symbol   is used for the underlying material tensor to 
distinguish it from the homogenized tensor   of the 
microstructure. The latter depends both on   and on the 
distribution of the voxels/voids.  

3.4 Extracting the Homogenized Tensor 
Given a microstructure as in Figure 12b, the first task lies in 
computing the homogenized 4th order tensor  . While a generic 
4th order tensor is defined by 81 independent values, the 
isotropic material satisfies multiple symmetries [37]: 

 ijkl ijlk jikl klji
       (3.5) 

Thus, 21 independent values are sufficient to represent  . 
Further, if the microstructure exhibits three planes of symmetry, 

 



i.e., if it is orthotropic, the number of independent constants 
reduces to nine, resulting in: 
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A popular strategy for computing   is to impose six-
independent periodic boundary conditions on the 
microstructure, and extracting the tensor through stress 
averaging [14]. While this strategy exhibits fast convergence with 
respect to mesh size, generating periodic constraints during the 
optimization process poses several challenges [38]. For example, 
the resulting Lagrangian system is not amenable to a fast 
iterative solution.  
Therefore an alternate constant-strain strategy [14] is adopted. 
This method is fairly easy to implement, and it requires far fewer 
conjugate gradient iterations to converge. Here, the following six 
independent strains are considered: 
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For each of the above six strains, the corresponding 
displacements are given by: 
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These six sets of displacements are imposed on the boundary of 
the microstructure, leading to six independent finite element 
problems, with the corresponding stresses: 

  1 2 3 4 5 6
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T
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Once these stresses are extracted, one can show that the 
components of the   matrix are given by [4]: 

 1
( , ) ( , , )i

j
i j x y z d



 
   (3.10) 

Many of these components are identically zero, consistent with 
Equation (3.6).  

3.5 Matrix-Free Finite Element Analysis 
We now focus on the efficient solution of the above set of six 
finite element problems. Observe that, in the voxel mesh, since 
each voxel possesses eight nodes, and each node is associated 
with three degrees of freedom, the element stiffness matrix for 
each voxel is given by a 24x24 matrix [39]: 
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Since all elements in the voxel mesh are identical, it is sufficient 
if the above matrix is computed once at the beginning of the 
optimization process. 

In classic finite element analysis, the element stiffness matrices 
are typically assembled into a global stiffness matrix K , whose 
size and structure will depend on the distribution of the voxels. 
Once the K matrix is assembled, the Dirichlet problems 
described result in a constrained linear algebra problem of the 
form: 

 Solve: 0

s.t:     

i

i i

Ku

Cu b




 (3.12) 

In the present work, the explicit construction of these matrices is 
avoided through an ‘assembly-free’ (a.k.a. ‘matrix-free’) 
approach [40] where neither K  nor C are assembled/stored.  
Specifically, to solve Equation (3.12), the conjugate-residual 
method [41] is employed. The conjugate-residual method is a 
generalization of the popular conjugate-gradient method in that 
it is designed to efficiently handle linear constraints. The critical 
steps in this method are the matrix-vector multiplication Ku  and 
the constraint-vector multiplication Cu ; please see [41]  for 
details. These are implemented here in a matrix-free form as 
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The advantages of a matrix-free analysis are:  
1. Memory requirements are obviously reduced, and therefore 

fine resolution microstructures can be analyzed and 
optimized. 

2. Since modern computer architectures are memory-
bandwidth limited, memory reduction indirectly translates 
into increased computational speed [42]. 

3. As the voxels are deleted during the optimization, only the 
relevant elements need to be considered in Equation (3.13) 
and Equation (3.14). 

4. Matrix-free multiplication is well suited for parallelization 
on multi-core architectures [43]. 

Once the six independent constrained linear algebra problems 
are solved, the homogenized tensor   is computed via Equation 
(3.10). 

3.6 Topological Sensitivity Computation 
We now focus on the optimization/design process. Two specific 
design objectives considered in this paper are the average bulk-
modulus and the average shear-modulus of the microstructure. 
Recall that, in linear elasticity, the standard bulk-modulus and 
shear-modulus are defined as: 

 3(1 2 )

2(1 )

E
K

E
G











 (3.15) 

Further, observe that these can be extracted from the tensor 1
in Equation (3.4) via: 
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Motivated by Equations (3.16) and (3.17), given a homogenized 
tensor 1


 associated with a microstructure, the average bulk 

modulus and average shear modulus are defined as: 
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Since the primary objective in this paper is to maximize K  or 
G , the topological sensitivity of K  and G  must be computed. 
Towards this end, one must first compute the topological 
sensitivity of the homogenized   matrix. It was shown in [13] 
that the topological sensitivity field of the homogenized   is 
given by:  
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where the stress fields &i jσ σ  were defined earlier in Equation 

(3.9). Observe that 


 is a 4th order tensor field with the usual 

symmetries of an orthotropic tensor. Further since: 

 1 I   (3.24) 

the topological sensitivity of 1
 is given by: 
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Exploiting Equation (3.25) and Equation (3.19), the topological 
sensitivity of the homogenized bulk modulus is given by: 
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while the topological sensitivity of the homogenized shear 
modulus is given by 
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3.7 Proposed Method 
The above topological sensitivity theory can now be used to carry 
out a topology optimization as follows: 

1. The optimization starts at a volume fraction of 1.0; the 
microstructure is discretized into N elements, where N 
ranges from 10,000 to 300,000 in the numerical 

experiments discussed in the next Section. A single element 
stiffness matrix is computed per Equation (3.11). The 
‘current volume fraction’ v  is set to 1.0, and ‘desired 
decrement’  and the increment v  , is set to 0.01. 

2. The finite element problems are solved over the current 
mesh, and the stresses are extracted at the center of each 
element. The tensor   is computed via Equation (3.10). 

3. The topological sensitivity field (either K
  or 

G
 ) is 

computed at the center of each voxel, and locally 
smoothened  with neighboring elements. 

4. Treating the topological sensitivity field as a level-set, a new 
topology with a volume fraction of ( – v ) is extracted. 
The quantity of interest (say, bulk modulus) is computed 
over the new topology. If this quantity has converged for the 
volume fraction ( – ), then the optimization moves to 
the next step, else it returns to step 2. 

5. The current volume fraction is set to ( – ), and the 
optimization returns to step 2 (until the final volume 
fraction is reached). 

 
Figure 12: An overview of the algorithm.  

3.7 Exploiting Symmetry 
One of the significant advantages of tracing the pareto-optimal 
curve is that since each intermediate microstructure is pareto-
optimal, it exhibits a three-fold symmetry (i.e., there is no 
preferred direction due to material isotropy and symmetry of 
problem specification). In other words, as the bulk or shear 
modulus is optimized, the components of   in Equation (3.6) 
satisfy the following additional properties:  

 
11 22 33

12 13 24

44 55 66

C C C

C C C

C C C

 
 
 

 (3.28) 

Thus, it is sufficient to solve two finite elements problems 
(instead of the six), namely, a stretching and a shear problem. 
This further reduces the computation without sacrificing on 
accuracy.   

v

v v

v v

 



3.8 Parallelization on CPU and GPU 
Much of the computation time is spent in executing the 
assembly-free sparse matrix-vector multiplication (SpMV) in 
Equation (3.13). In the CPU, parallelization of this module was 
attained through OpenMP commands (www.openmp.org). Other 
supporting modules such as ‘vector dot-product’, etc., were also 
accelerated through OpenMP commands. 
The GPU implementation relies heavily on the CUDA language 
[44].  At the start of the optimization process, the following data 
was transferred to the GPU: (1) mesh connectivity, (2) element 
stiffness matrix and (3) material properties. Additional memory 
was allocated for the solution vector and other auxiliary data. 
Each node of the mesh is assigned to a scalar processor of the 
GPU. When a block of threads is launched, observe that a single 
memory fetch of the element stiffness matrix is sufficient. The 
three degrees of freedom associated with each node are fetched 
in parallel, and assembly-free SpMV is implemented. Many of 
the low-level operations such as vector-product were 
implemented using CUBLAS library. Once the linear system is 
solved, the solution is transferred to the CPU for post-processing 
and sensitivity computation. Despite this overhead, the GPU 
implementation offers a speed-up for fine-resolution 
optimization. 

4. NUMERICAL EXAMPLES  

In this Section, we present results from numerical experiments 
based on the above algorithm.  The material properties are 1E =  
and 0.28ν = , and the initial microstructure is a cube of 1 mm on 
each side (unless otherwise noted). All experiments were 
conducted on a Windows 7 64-bit machine with the following 
hardware: 
• AMD 8-core FX-8350 CPU running at 4.0GHz with 16 GB of 

memory; parallelization of CPU code was implemented 
through OpenMP commands.  

• The GPU is an NVidia GTX Titan (2688 cores) with 5.6 GB, 
and CUDA compute capability of 3.5. 

4.1 Bulk-Modulus Maximization 
In the first experiment, the cube is discretized into 30,000 
elements (about 100,000 degrees of freedom), and the bulk 
modulus is optimized. Figure 14 illustrates the optimal 
microstructure of maximum bulk-modulus at various volume 
fractions. The desired volume fraction of 0.2 is reached in 45 
seconds, using 152 finite element operations.  

  
(a) 0.75                    (b) 0.50  

   
(c) 0.3                    (d) 0.2 

Figure 13: Optimal microstructures of maximum bulk modulus 
at various volume fractions. 

Figure 15 illustrates the computed and theoretical relative bulk-
moduli as a function of the volume fraction. As one can observe, 
the proposed method traces the theoretical curve closely. 

  
Figure 14: Computed and theoretical Hashin-Shtrikman pareto-

optimal curves for bulk-modulus maximization. 
Given the unit cell of volume fraction of 0.2 in Figure 14, these 
can be stacked to create locally-periodic microstructures as 
illustrated in Figure 16. 

  
Figure 15: Stacking of the unit-cell in Figure 14d. 

4.2 Shear-Modulus Maximization 
The above set of experiments is now repeated for shear-modulus 
maximization. Figure 17 illustrates the optimal microstructure of 
maximum shear-modulus at various volume fractions. The 
desired volume fraction of 0.3 was reached in 40 seconds, using 
about 100 finite element operations. 

  
(b) 0.75                    (b) 0.50  

   
(d) 0.4                    (d) 0.3 

Figure 16: Optimal microstructures of maximum shear modulus 
at various volume fractions.. 

Figure 18 illustrates the pareto-optimal curves for shear-moduli 
versus volume fraction. 

 



  
Figure 17: Computed and theoretical Hashin-Shtrikman pareto-

optimal curves for shear-modulus maximization. 
Figure 19 illustrates the stacked microstructure for the unit-cell 
in Figure 19d. 

  
Figure 18: Stacking of the unit-cell in Figure 17d. 

4.3 Computational Cost 
One of the salient features of the proposed method is that 
microstructures of fine resolution can be optimized efficiently. 
Figure 20 illustrates the total time taken to optimize the bulk 
modulus up to a volume fraction of 0.2 as a function of finite 
element degrees of freedom (DOF). As one can observe, the time 
taken by the proposed method (on a desktop with 8 cores) for a 
3 million degree system is around 4 hours. 

 
Figure 19: Time taken to optimize the bulk-modulus to a volume 

fraction of 0.2, in steps of 0.025, as a function of DOF. 

5. CONCLUSIONS  

The main contribution of the paper is an efficient method for 
microstructural design. As illustrated, the proposed method 

closely traces the Hashin-Shtrikman pareto-optimal curves. 
Consequently, the underlying stiffness matrices are always well-
conditioned, and multi-fold symmetry can be imposed and 
exploited during the optimization process. The software will be 
made available through the author’s research website 
www.ersl.wisc.edu.  This paper serves as a foundation for future 
work on: (1) negative Poisson ratio materials, (2) multi-level 
topology optimization, and (3) multi-material microstructural 
design.  
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