

Large Scale Finite Element Analysis via

Assembly-Free Deflated Conjugate Gradient

Praveen Yadav, Krishnan Suresh
suresh@engr.wisc.edu

Department of Mechanical Engineering,
UW-Madison, Madison, Wisconsin 53706, USA

Abstract

Large-scale finite element analysis with millions of degrees of freedom is becoming
commonplace in solid mechanics. The primary computational bottle-neck in such problems is
the solution of large linear systems of equations.

In this paper, we propose an assembly-free version of the deflated conjugate gradient (DCG)
for solving such equations, where neither the stiffness matrix nor the deflation matrix is
assembled. While assembly-free FEA is a well-known concept, the novelty pursued in this
paper is the use of assembly-free deflation. The resulting implementation is particularly well
suited for large-scale problems, and can be easily ported to multi-core CPU and GPU
architectures. For demonstration, we show that one can solve a 50 million degree of freedom
system on a single GPU card, equipped with 3 GB of memory.

The second contribution is an extension of the “rigid-body agglomeration” concept used in
DCG to a “curvature-sensitive agglomeration”. The latter exploits classic plate and beam
theories for efficient deflation of highly ill-conditioned problems arising from thin structures.

1. INTRODUCTION

Finite element analysis (FEA) is a popular
numerical method for solving solid
mechanics problems. For large scale
problems, the main computational bottle-
neck in FEA is the solution of linear systems
of equations of the form:
 Kd f= (1.1)

Henceforth, the matrix K will be referred to
as the stiffness matrix, and it is assumed to
be sparse and positive definite. Direct solvers
[1] are the default choice today for solving
such linear systems. Direct solvers are robust
and well-understood, and rely on factoring
the stiffness matrix into a Cholesky
decomposition:

 TK LL= (1.2)

This is followed by a triangular solve:

 1()Td L L f− −= (1.3)

However, due to the explicit factorization,
direct solvers are memory intensive [2]. To

quote the ANSYS manual [3], “[sparse direct
solver] is the most robust solver in ANSYS,
but it is also compute- and I/O-intensive”.
Specifically, for a matrix with one million
degrees of freedom (DOF) [3]:
• Approximately 1 GB of memory is
needed for assembly.

• However, 10 to 20 GB additional
memory is needed for factorization.

Since memory-access is the bottle-neck in
computer architecture, this translates into an
increased wall-clock time.

Large-scale FEA problems with millions of
degrees of freedom (DOF) are becoming
commonplace in solid mechanics; examples
include multi-scale analysis [4], analysis of
micro-CT data [5], and analysis of voxelized
geometry [6]. Indeed, in some instances,
linear systems with billions of DOF must be
solved [5]. Direct solvers are ill-suited for
such problems.

Instead, one must resort to iterative solvers
that do not factorize the stiffness matrix, but
compute the solution iteratively [7]. In
iterative solvers, the main computational
issues are:

1. Efficient implementation of sparse

matrix-vector multiplication (SpMV).

2. Accelerating the iterative solver either

through an efficient preconditioner

and/or through multi-grid/deflation

techniques.

Methods to increase the efficiency of SpMV
(see [8] for a review) include profile and
band-width reduction, efficient storage
techniques, graph-theoretic optimization
and specialized octree data-structures. In
addition, implementation of SpMV on
graphics-programmable units (GPUs) has
drawn considerable attention [9], [10].

In this paper, we shall exploit element-
congruency and assembly-free methods to
reduce memory usage, and to accelerate
SpMV and CG-iterations, both on the CPU
and GPU. Assembly-free SpMV for large-
scale finite element analysis on the GPU was
recently proposed in [11], but element-
congruency was not exploited.

2. LITERATURE REVIEW

Since the stiffness matrices considered in
this paper are symmetric positive definite,
the conjugate gradient (CG) is the focus of
this paper [7]. As is well known [2], [7], [12],
CG’s convergence can be poor if the stiffness
matrix exhibits high condition number, or if
the eigen-values of the stiffness matrix are
spread out. In solid mechanics, poor
convergence of CG is fairly common [2], for
example, in the analysis of composite
materials, thin structures, multi-scale
problems, etc.

Acceleration of CG, i.e., reduction in the
number of iterations, is usually achieved
through a combination of preconditioners,
multi-grid methods and deflation
techniques.

2.1 Preconditioners

One of the oldest preconditioners is the
Jacobi preconditioner; it does not require the
assembly of the stiffness matrix, and is
therefore scalable and easily parallelizable.
But it is not very effective for many ill-
conditioned problems in solid mechanics [2];
this is confirmed later through numerical
experiments. Other preconditioners such as
Gauss-Seidel and SSOR perform better than
Jacobi, but have similar limitations.

The incomplete Cholesky (IC) is perhaps the
most robust and efficient preconditioner
[13], [14]. It relies on an approximate
Cholesky factorization (see Equation (1.2))
where, for example, the lower-triangular
matrix L is forced to have the same sparsity-
pattern as K. Unfortunately, constructing
this preconditioner requires assembly of the
stiffness matrix. Further, while efficient
implementations of IC exist for single core
systems, these are not easily portable to
multi-core architectures [5].

2.2 Multi-Grid Methods

Multi-grid methods are gaining popularity
for both theoretical and practical reasons.
The basic concept behind a two-level
geometric multi-grid method is illustrated in
Figure 1. During a conjugate gradient
iteration, the residual over a ‘fine-mesh’ is
restricted to a coarse-level through a grid
transfer. This is then smoothened at the
coarse level, and prolonged back to the finer
level [15], [16]. This accelerates the
convergence of CG, and can be easily
generalized to multiple levels for optimal
convergence.

Figure 1: A two-level geometric multi-grid.

In the algebraic multi-grid method [17],
[18], the restriction and prolongation

operators are constructed in an algebraic
fashion, rather than through a geometric
mesh transfer. The properties and
performance are similar to that of the
geometric multi-grid.

Multi-grid methods can be implemented in
an assembly-free manner resulting in a low
memory foot-print. This was explored by
Arbenz and colleagues for large-scale solid
mechanics problems [5]. While multi-grid
methods perform particularly well for scalar
problems and solid mechanics (vector) posed
over ‘thick solids’, they are prone to Poisson
locking and ill-conditioning for problems
posed over ‘thin solids’ [19] and composite
materials [20].

Improvements over the multi-grid method
for thin structures were proposed in [19],
[21], [22], where lower-dimensional models
were used instead of coarse-meshes, thus
avoiding the locking issue. Here, we explore
deflation techniques that can address these
issues in a unified manner.

2.3 Deflation

The concept behind deflation [23] is to
construct a matrix W , referred to as the
deflation space, whose columns
‘approximately’ span the low eigen-vectors of
the stiffness matrix.

Since computing the eigen-vectors is
obviously expensive, Adams and others [12]
suggested a simple agglomeration technique
where finite element nodes are collected into
small number of groups. For example, Figure
2 illustrates agglomeration of the finite
element nodes into four groups.

Figure 2: (a) Finite element mesh, (b)
agglomeration of mesh nodes into four

groups.

Then, to construct the W matrix, nodes
within each group are collectively treated as
a rigid body. The motivation is that these

agglomerated rigid body modes mimic the
low-order eigen-modes. Thus, for small
rotations, the displacement of each node
within a group can be expressed as:

1 0 0 0

0 1 0 0

0 0 1 0
g

u z y

v z x

w y x

λ

     −       = −          −     

 (2.1)

where

 { }0 0 0
, , , , ,

T

g x y z
u v wλ θ θ θ= (2.2)

are the six unknown rigid body motions
associated with the group, and (, ,)x y z are

the relative coordinates of the node with
respect to the geometric center of the group.
Observe that Equation (2.1) is essentially a
restriction operation similar to that of multi-
grid. Indeed, the concept of using rigid-body
modes has been explored in the context of
multi-grid methods as well [17], [24].

Once the mapping in Equation (2.1) is
constructed for all the nodes, these can be
‘assembled’ to result in a deflation matrix W :

 d Wλ= (2.3)

where d is the 3N degrees of freedom, λ is
the 6G degrees of freedom associated with
the groups. One can now exploit the W
matrix to create the deflated conjugate
gradient (DCG) algorithm described below
(see [23] for a derivation and theoretical
analysis):

Algorithm: Deflated CG (DCG); solve
Kd f=

1. Construct the deflation space W

2. Choose
0
d where

0
0TW r = &

0 0
r f Kd= −

3. Solve
0 0

T TW KW W Krµ = ;

0 0 0
p r Wµ= −

4. For 1,2,..., ,j m= d0:

5. 1 1

1

1 1

T

j j

j T

j j

r r

p Kp
α

− −

−

− −

=

6.
1 1 1j j j j

d d pα
− − −

= +

7.
1 1 1j j j j

r r Kpα
− − −

= −

8.
1

1 1

T

j j

j T

j j

r r

r r
β
−

− −

=

9. Solve T T

j j
W KW W Krµ = for µ

10.
1 1j j j j j

p p r Wβ µ
− −

= + −

11. End-do

When N >> G, i.e., when the number of
mesh nodes far exceeds the number of
groups:

• Within the DCG iteration, the primary

computation is the sparse matrix-vector

multiplication (SpMV) Kx in steps 5 and 9.

• Additional computations include the

restriction operation TW x in step 9, the

prolongation W µ in step 10, and the

solution of the linear system

()TW KW yµ = in step 9.

The one-time coarse matrix TW KW
construction in step 3 can be viewed as a
series of SpMV, followed by a series of
restriction operations, and can be significant.
Observe that the deflation matrix is also
sparse; this is exploited later on for
assembly-free implementation of DCG.

The optimal number of groups depends on
the number of low order eigen-modes [2].
Later, we shall study the impact of group size
on the computational time.

Next, we propose an improvement over the
aforementioned rigid-body agglomeration,
specifically for thin structures. Thin
structures find a wide variety of applications
across many disciplines including civil,
automotive, aerospace, MEMS, etc., and
efficient solution of solid mechanics
problems over such structures is of
significant importance.

3. THIN STRUCTURES

3.1 Motivation

The rigid-body agglomeration is very
effective in capturing the low-order eigen-
modes of ‘thick’ solids such as the ones in
Figure 3.

Figure 3: Example of ‘thick’ solids.

On the other hand, consider the ‘thin’ solids
in Figure 4; the low order eigen-modes of
such solids are significantly different from
that of the thick solids in that the curvature
effects are not negligible.

Figure 4: Examples of ‘thin’ solids.

This is illustrated schematically in Figure 5; a
large number of groups will be required to
effectively capture these modes through
rigid-body agglomeration. An alternate
concept is proposed next.

Figure 5: Curvature effects in thin

structures.

3.2 Curvature-Sensitive Deflation

The proposed concept is to append the rigid
body deflation in Equation (2.1) with

additional curvature variables. Specifically,
consider a thin plate whose smallest
dimension is in the z-direction. Equation
(2.2) is extended as follows:

{ }0 0 0 , , ,
, , , , , , , ,

T

g x y z xx yy xy
u v w w w wλ θ θ θ= (3.1)

Exploiting Kirchoff-Love theory for thin
plates [25], the nodal displacement is then
expressed as:

n g

u

v W

w

λ

      = 
     

 (3.2)

where

2 2

1 0 0 0 0

0 1 0 0 0

0 0 1 0
2 2

n

z y zx zy

W z x zy zx

x y
y x xy

   − − −    = − − −     −  

 (3.3)

Equation (3.3) will be referred to as
“Kirchhoff-Love” agglomeration.

A similar approach can be used to construct
the deflation space for beam-problems.
Unlike a thin plate, the curvature of the
beam varies only along one major axis.
Exploiting Euler-Bernoulli theory, the group
variables are:

 { }0 0 0 ,
, , , , , ,

T

g x y z xx
u v w wλ θ θ θ= (3.4)

and:

2

1 0 0 0

0 1 0 0 0

0 0 1 0
2

n

z y zx

W z x

x
y x

   − −    = −     −  

 (3.5)

Equation (3.5) will be referred to as “Euler-
Bernoulli” agglomeration.

4. LIMITED-MEMORY ASSEMBLY-
FREE DCG

In this section, we consider a limited-
memory assembly-free implementation of
the deflated conjugate gradient. The
proposed implementation is applicable to

both rigid-body and curvature-sensitive
agglomeration. The focus of this Section is
on a CPU implementation; GPU
implementation is discussed in Section 5.

4.1 Assembly-Free FEA

Assembly-free finite element analysis was
proposed by Hughes and others in 1983 [26],
but has resurfaced [6] due to the surge in
fine-grain parallelization.

The basic concept here is that the stiffness
matrix is never assembled; instead, the
fundamental matrix operations such as the
SpMV are performed in an assembly-free
elemental level. In other words, instead of
the classic “assemble and then multiply”:

e

assemble

Kx K x
     
∏� (4.1)

the strategy is to “multiply and then
assemble”:

 ()e e
assemble

Kx K x∏� (4.2)

However, assembly-free analysis is not
particularly advantageous over classic
‘assembled’ approach unless: (1) the total
memory consumption can be reduced, and
(2) CG can be accelerated in an assembly-
free mode. In the remainder of this paper, we
show how both of these can be achieved.

Much of the memory access in deflated
conjugate gradient comes from
storing/retrieving the stiffness and deflation
matrices. These can be dramatically reduced
if mesh-congruency can be exploited, as
explained in the next Section.

4.2 Exploiting Mesh Congruency

The premise here is that in large-scale
meshes, significant number of elements
tends to be geometrically congruent. For
example, consider the finite element mesh of
a composite specimen [27] in Figure 6,
consisting of about 83000 elements; the
mesh was generated using ANSYS.

Figure 6: Congruency in a finite element

mesh.

Through a simple congruency check [6], one
can determine that the mesh contains only
322 distinct elements, i.e., less than 0.4%,
are geometrically and materially distinct;
these are located near the notch as illustrated
in Figure 7.

Figure 7: Most of the distinct elements are

localized.

Observe that congruent elements will yield
identical element stiffness matrix. Thus, in
an assembly-free mode, only the distinct
element stiffness matrices need to be
computed and stored. This dramatically
reduces the memory foot-print, and
accelerates SpMV.

4.3 Mesh Partitioning

Focusing now on deflation, the first step is
agglomeration, i.e., collection of mesh-nodes
into a small number of groups. The groups
are created by partitioning mesh with
contiguous bounding boxes, and nodes are
assigned to respective boxes, and empty
boxes are eliminated. Figure 8a illustrates a
finite element mesh with 50,000 nodes,
while Figure 8b illustrates agglomeration of
these nodes into 32 groups, and Figure 8c
illustrates agglomeration into 64 groups.

(a) Finite element mesh.

(b) Partitioning into 32 groups.

 (c) Partitioning into 64 groups.

Figure 8: Partitioning mesh-nodes into
groups.

4.4 Assembly-Free Deflation

Just as the stiffness matrix is never
assembled to carry outKx , the deflation
matrix W need not be assembled to carry
out the two primary operations, namely, Wλ

and TW x . The non-zero values of deflation
matrix are either 1 or some combination of
relative nodal coordinates. Therefore, both
these operations only require the nodal
coordinates, and the group mapping.

As before, instead of “assemble and then
multiply”, we have “multiply and then
assemble”:

 ()n n

assemble

W Wλ λ∏� (4.3)

 ()T T

n n
assemble

W x W x∏� (4.4)

Observe that the difference between
Equation (4.2) and Equation (4.3) is that the
former is an assembly over elements, while
the latter is an assembly over nodes.

4.5 Reduced Stiffness Matrix Deflation

Recall in step-3 of the DCG, one must
compute the reduced matrix:

 TK W KW� � (4.5)

In this paper, we assume that the number of
groups (G) is much less than the number of
nodes (N). Therefore the size (6G x 6G) of
the reduced matrix is small compared to the
size of the stiffness matrix.

The reduced matrix is computed element-by-
element as follows. The element stiffness
matrix is divided into an 8x8 block where
each block is a 3x3 matrix associated with
the degrees of freedom of a node:

11 18

81 88

e

k k

K

k k

    =     

…

� � �

�

 (4.6)

We then compute Equation (4.5) as follows:
8 8

1 1

{() () }T T

n j ij n i
element i j
assembly

W KW W k W
= =

= ∑∑∏ (4.7)

Equation (4.7), even though assembly free, is
not parallel friendly due to race condition. It
is computed once in the CPU, and its
Cholesky decomposition is stored for
repeated solve.

5. GPU IMPLEMENTATION

In this section we outline the steps for
implementing DCG on GPU.

5.1 SpMV

As mentioned earlier, the Sparse Matrix
Vector Multiplication (SpMV) Kx is the
most expensive computation in DCG. Direct
implementation of Equation (4.2) suggests
that we assign a thread to each element and
update the result element-by-element.
However, this obviously creates a race
condition when a nodal index connected to
multiple elements is simultaneously
accessed.

Therefore, a thread is assigned to each node.
Then, for all neighboring elements the
stiffness coefficients associated with the
node and their corresponding nodal DOF are
gathered; this is illustrated in Figure 9. This
ensures that the product

e e
K x is computed

without race conditions.

The memory access for gathering nodal DOF
is unfortunately not coalesced since the
DOFs are staggered based on element
connectivity. However, once the result is
computed the update in device memory is
coalesced.

Figure 9: SpMV implementation in GPU.

5.2 Prolongation Operation

The prolongation operation Wλ is straight
forward in that each thread can be assigned
to a node. The corresponding group number
is determined, and Equation (4.3) is
executed. Figure 10 illustrates a schematic
diagram of the prolongation operation.

Memory access for prolongation is coalesced
for the most part. The nodes can gather the
nodal coordinates (, ,)x y z in a lock-step

method. However gathering the group DOF
required for prolongation has the potential
for bank conflict. Since the length of the
vector associated with a group is small, this
is not a serious issue; the result update is
fully coalesced.

Figure 10: GPU implementation of

prolongation.

5.3 Restriction Operation

The restriction operation T
W x is much more

challenging to parallelize on the GPU due to
potential race conditions. Instead of
assigning a thread to each node, a block of
threads is assigned to a group. Nodal
projections are computed for each thread
using Equation (4.4) and saved in shared
memory within the block; this is illustrated
in Figure 11. Threads are synchronized after
the shared memory update. A reduce
operation is performed on respective DOFs
of the nodal projection to yield resultant
vector for the group. The allowable number
of threads within the block is thus restricted
by the shared memory.

The memory access for this part of the
implementation is not coalesced either, as
node indexes that belong to the group may
skip a large sequence indexes. As shown in
Figure 11, the warp may end up with
coalesced memory access if a contiguous
sequence of indexes is assigned for
restriction.

Figure 11: GPU implementation for

restriction.

5.4 Other Operations

All of the other steps of CG operations are
computed using the standard functions
available in the CuBLAS library of CUDA
SDK 4.0 [28]. This includes computing the
dot products of two given vectors,
performing linear vector updates using
saxpy/axpy and most importantly using a
dense matrix vector solver.

6. NUMERICAL RESULTS

In this section, we present numerical results
of the AF-DCG CPU and GPU
implementations. Unless otherwise noted,
experiments were conducted on a Windows 7
64-bit machine with following specifications:

• AMD Phenom™ II X4-955 processor

running at 3.2GHz with 4GB of memory;

OpenMP [29] commands were used to

parallelize CPU code.

• NVidia GeForce GTX 480 (448 cores)

with 0.75GB of device memory.

All computations were run in double-
precision, and the relative residual norm for
CG-convergence was set to 10-8.

6.1 Congruence of Mesh Elements

First, to illustrate the computational
advantages of exploiting mesh congruence,
consider the beam in Figure 12. Meshes of
increasing density were constructed; observe

that all elements in the mesh are all
identical.

Figure 12: A beam geometry and its mesh.

The time taken to perform a single
assembly-free SpMV, i.e., a single Kx , on
the CPU, with and without exploiting
congruency was computed; the results are
summarized in Figure 13.

Observe that the computation associated
with the two methods is exactly the same …
the only difference is the memory access
time! Further, the overhead of computing the
global K matrix has been neglected.

When congruence is not exploited, element
stiffness matrices are fetched from memory
as needed. With congruence exploitation, all
memory requests are mapped to the single
element stiffness matrix (that is likely to be
in cache memory).

Figure 13 illustrates that a speed-up of 10 can
be achieved in SpMV with no additional
effort. Since SpMV lies at the core of all
iterative methods, this has a far reaching
consequence. Of course, in this scenario, the
mesh contains one unique element. In
practice, meshes typically contain a finite
number (1≥) of distinct elements; the

speed-up will depend on how the element
stiffness matrices are grouped and accessed.

Figure 13: Assembly-free SpMV on the CPU

with and without exploiting element-
congruency.

6.2 Deflated-CG on a Thick Solid

Having discussed the importance of
congruence exploitation, in this experiment
we illustrate the impact of rigid body
deflation on CG. A knuckle geometry is
illustrated in Figure 14a that is fixed at the
two horizontal holes, and a vertical force is
applied on the third hole; observe that the
geometry is relatively ‘thick’, i.e., there are
no plate-like or beam-like features. A voxel
mesh comprising of 997,626 elements
(3,158,670 DOFs) was generated as
illustrated in Figure 14b.

Figure 14 (a) Knuckle geometry and loading.

(b) Voxel mesh with 3.16 million DOF.

To solve the above problem, the Jacobi-PCG
took 1741 iterations and 245 seconds on the
CPU. The displacement and stress plots are
illustrated in Figure 15.

Figure 15 Static displacement and stress for

knuckle.

The same system was then solved with
different number of rigid-body
agglomeration groups. For example, Figure
16 illustrates agglomeration into 100 and
1000 groups.

Figure 16: Visual representation of 100 and

1000 agglomeration groups.

The results for varying number of groups are
summarized in Table 1. The following
observations are worth noting:

• Increasing the groups from zero (pure

Jacobi-PCG) to 100 groups reduces the

number of CG-iterations by a factor of 10,

but the CPU time reduces only by a factor

of 4. The underlying reason is that every

iteration in DCG entails two SpMV.

• Further, increasing the number of groups

beyond a certain limit can lead to an

increase in computation time. Finding an

optimal number of groups is a topic of

future research.

• As the number of iterations reduces, the

speed-up gained through GPU also reduces

as expected since the bottlenecks are the

SpMV requires per iteration, and the TW x

operation that is not amenable to fine-

grain parallelism.

Finally, the memory requirements are fairly
small even for a 3.15 million DOF.

Table 1: Total iterations and time taken to
solve the knuckle with varying number of

groups
G #Iter CPU

Time
(s)

GPU
Time
(s)

GPU
Memory
(MB)

o 1741 245 36 174

100 182 63 34 210

200 145 54 29 213

400 114 48 28 224

600 95 48 31 252

800 73 46 32 263

1000 69 52 39 293

The convergence plot in Figure 17 illustrates
that the Jacobi-PCG converges slowly, but
steadily towards the solution, without any
stagnation; this is typical of solid mechanics
problems posed over ‘thick’ solids. The rigid-
body agglomeration leads to a dramatic drop
in number of iterations as mentioned earlier.

Figure 17: Convergence of DCG vs Jacobi-

PCG.

6.4 Thin Solids

In this section, we consider the thin plate
illustrated in Figure 18. The dimension of the
plate is 100x100x5 (mm); the four side faces
are fixed, with a static force applied to the
top face. The geometry is discretized using a
voxel mesh of 541,696 elements with
2,042,415 DOF.

Figure 18: Loading on a thin plate.

The Jacobi-PCG converges to the solution in
6337 iteration which took an average time of
71.308 s.

6.4.1 Rigid Body Agglomeration

Rigid body deflation space was then used for
DCG. The results are summarized in Table 2;
the conclusions are similar those drawn
earlier for the thick solid.

Table 2: Total iterations and time taken.
G #Iter CPU

Time
(s)

GPU
Time
(s)

GPU
Memory
(MB)

o 6337 550 71 113

100 736 126 36 138

200 382 72 23 146

300 260 54 23 161

400 199 48 22 178

500 166 49 26 205

600 144 52 33 233

The convergence plot in Figure 19 highlights
the effectiveness of DCG in case of thin
structures. The presence of numerous low-
order eigen-modes leads to stagnation for
Jacobi-PCG whereas DCG ensures that the
low-order eigen modes are smoothed
effectively.

Figure 19: Convergence of DCG vs Jacobi-

PCG for thin plate.

6.4.2 Kirchhoff-Love Agglomeration

Next, the above problem was solved using
the thin-plate agglomeration; see Equation
(3.3). Table 3 summarizes the results.
Observe that, although the Kirchhoff-Love
agglomeration consumes 30% more degrees
of freedom per group, the net-gain is
significant. In other words, for the same
number of group-DOF, for thin structures,
capturing the curvature leads to faster
convergence. It is a better alternative for
large scale problems with limited memory
constraints.

Table 3: Total iterations and time taken.
G #Iter CPU

Time
(s)

GPU
Time
(s)

GPU
Memory
(MB)

o 6337 550 71 113

100 256 52 21 140

200 130 35 18 161

300 96 35 22 192

400 76 42 31 233

6.4.3 Computational Bottlenecks

Figure 20 illustrates the CUDA profile for the
rigid-body deflation on the GPU for the
above problem with 400 groups (the profile
is similar for the Kirchhoff-Love
agglomeration). Observe that 50% of the
time is spent in the Kx SpMV kernel, about
20% is spent on the restriction operation

TW x ; the remaining 30% is spent on other
tasks.

Figure 20: CUDA Profile for RBM deflation

6.5 Large-Scale FEA

Since the algorithm consumes relatively less
memory, one can solve reasonably large-
scale problem on a typical desktop. To
illustrate consider the ‘Thomas’ engine in
Figure 21 whose wheel are fixed, and a load
is applied as shown.

Figure 21: Structural problem over a Thomas

engine.

Since the finite element analysis relies on a
robust voxelization scheme, the detailed
features of the model need not be
suppressed. Here, the model was voxelized
using 20 million elements, resulting in a 50
million DOF system.

Figure 22: Deflection from a 50 million DOF

system.

For this experiment, we used the GTX Titan
GPU card with 6GB of memory. The linear
system was solved on this GPU using rigid-
body agglomeration with 900 groups in 24
minutes, consuming less than 3 GB of
memory.

7. CONCLUSION

The main contribution of the paper is an
assembly-free deflated conjugate gradient
method for solid mechanics. In addition, the
concept of “curvature-sensitive”
agglomeration was proposed for efficient
handling of thin structures. This paper
serves as a foundation for future work on: (1)
non-linear deformation, (2) composite
modeling, and (3) topology optimization
[30]. In the current implementation, the
reduced matrix computation in step-3 of the
DCG algorithm is performed on the CPU.
This can take a significant amount of time
for large number of groups. Future work will

focus on improving the efficiency of this step.

Acknowledgements

The authors would like to thank the support
of National Science Foundation through
grants CMMI-1232508 and CMMI-1161474.

References

[1] G. H. Golub, Matrix Computations.
Balitmore: Johns Hopkins, 1996.

[2] R. Aubry, F. Mut, S. Dey, and R. Lohner,
“Deflated preconditioned conjugate
gradient solvers for linear elasticity,”
International Journal for Numerical

Methods in Engineering, vol. 88, pp.
1112–1127, 2011.

[3] ANSYS 13. ANSYS; www.ansys.com,
2012.

[4] Y. Efendiev and T. Y. Hou, Multiscale
Finite Element Methods: Theory and
Applications, vol. Vol. 4. New York, NY:
Springer, 2009.

[5] P. Arbenz, G. H. van Lenthe, and et. al.,
“A Scalable Multi-level Preconditioner
for Matrix-Free µ-Finite Element
Analysis of Human Bone Structures,”
International Journal for Numerical
Methods in Engineering, vol. 73, no. 7,
pp. 927–947, 2008.

[6] K. Suresh and P. Yadav, “Large-Scale
Modal Analysis on Multi-Core
Architectures,” in Proceedings of the
ASME 2012 International Design
Engineering Technical Conferences &
Computers and Information in
Engineering Conference, Chicago, IL,
2012.

[7] Y. Saad, Iterative Methods for Sparse
Linear Systems. SIAM, 2003.

[8] S. Williams, L. Oliker, and et. al.,
“Optimization of sparse matrix-vector
multiplication on emerging multicore
platforms,” presented at the Proc. 2007
ACM/IEEE Conference on
Supercomputing, Reno, Nevada, 2007.

[9] N. Bell, “Efficient Sparse Matrix-Vector
Multiplication on CUDA,” 2008.

[10] X. Yang, S. Parthasarathy, and P.
Sadayappan, “Fast Sparse Matrix-Vector
Multiplication on GPUs: Implications
for Graph Mining,” presented at the The
37th International Conference on Very
Large Data Bases, Seattle, Washington,
2011.

[11] A. Akbariyeh and et. al., “Application of
GPU-Based Computing to Large Scale
Finite Element Analysis of Three-
Dimensional Structures,” in
Proceedings of the Eighth International
Conference on Engineering
Computational Technology,
Stirlingshire, United Kingdom, 2012.

[12] M. Adams, “Evaluation of three
unstructured multigrid methods on 3D
finite element problems in solid
mechanics,” International Journal for
Numerical Methods in Engineering,
vol. 55, no. 2, pp. 519–534, 2002.

[13] M. Benzi and M. Tuma, “A Robust
Incomplete Factorization
Preconditioner for Positive Definite
Matrices,” Numerical Linear Algebra
With Applications, vol. 10, pp. 385–
400, 2003.

[14] M. Benzi, “Preconditioning Techniques
for Large Linear Systems: A Survey,”
Journal of Computational Physics, vol.
182, pp. 418–477, 2002.

[15] W. L. Briggs, V. E. Henson, and S. F.
McCormick, A Multigrid Tutorial.
SIAM, 2000.

[16] P. Wesseling, “Geometric multigrid with
applications to computational fluid
dynamics,” Journal of Computational
and Applied Mathematics, vol. 128, pp.
311–334, 2001.

[17] M. Griebel, D. Oeltz, and M. A.
Schweitzer, “An Algebraic Multigrid
Method for Linear Elasticity,” SIAM J.
Sci. Comput, vol. 25, no. 2, pp. 385–
407, 2003.

[18] E. Karer and J. K. Kraus, “Algebraic
multigrid for finite element elasticity
equations: Determination of nodal
dependence via edge-matrices and two-
level convergence,” International
Journal for Numerical Methods in
Engineering, 2010.

[19] J. Ruge and A. Brandt, “A multigrid
approach for elasticity problems on
‘thin’ domains,” in Multigrid methods:
theory, applications, and
supercomputing, vol. 110, S. F.
McCormick, Ed. New York: Marcel
Dekker Inc, 1988, pp. 541–555.

[20] T. B. Jonsthovel, M. B. van Gijzen, and
et. al., “Comparison of the deflated
preconditioned conjugate gradient
method and algebraic multigrid for
composite materials,” Computational

Mechanics, vol. 50, no. 3, pp. 321–333,
2012.

[21] V. Mishra and K. Suresh, “Efficient
Analysis of 3-D Plates via Algebraic
Reduction,” in ASME 2009
International Design Engineering
Technical Conferences and Computers
and Information in Engineering
Conference (IDETC/CIE2009), San
Diego, CA, 2009, vol. 2, pp. 75–82.

[22] V. Mishra and K. Suresh, “A Dual-
Representation Strategy for the Virtual
Assembly of Thin Deformable Objects,”
Virtual Reality, vol. 16, no. 1, pp. 3–14,
2012.

[23] Y. Saad, M. Yeung, J. Erhel, and F.
Guyomarc’h, “A Deflated Version of the
Conjugate Gradient Algorithm,” SIAM
JOURNAL ON SCIENTIFIC
COMPUTING, vol. 21, no. 5, pp. 1909–
1926, 2000.

[24] A. H. Baker, T. V. Kolev, and U. M.
Yank, “Improving algebraic multigrid
interpolation operators for linear
elasticity problems,” Numerical Linear
Algebra With Applications, vol. 17, pp.
495–517, 2010.

[25] S. Timoshenko and S. W. Krieger,
Theory of Plates and Shells. New York:
McGraw-Hill Book Company, 1959.

[26] T. J. R. Hughes, I. Levit, and J. Winget,
“An element-by-element solution
algorithm for problems of structural and
solid mechanics,” Comput Meth Appl
Mech Eng, vol. 36, pp. 241–254, 1983.

[27] J. Michopoulos, J. C. Hermanson, A. P.
Iliopoulos, S. G. Lambrakos, and T.
Furukawa, “Data-Driven Design
Optimization for Composite Material
Characterization,” J. Comput. Inf. Sci.
Eng, vol. 11, no. 2, 2011.

[28] NVIDIA Corporation, NVIDIA CUDA:
Compute Unified Device Architecture,
Programming Guide. Santa Clara.,
2008.

[29] “OpenMP.org,” 04-May-2014. [Online].
Available: http://openmp.org/wp/.

[30] K. Suresh, “Efficient Generation of
Large-Scale Pareto-Optimal
Topologies,” Structural and
Multidisciplinary Optimization, vol. 47,
no. 1, pp. 49–61, 2013.

