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Abstract4

Generating tangle-free high quality hexahedral meshes is an ongoing challenge. Tangled meshes, i.e., meshes5

containing negative Jacobian elements, are unsuitable for finite element (FE) simulations as they lead to6

erroneous results. Consequently, many untangling methods have been proposed; however, untangling is not7

always achievable.8

The present paper addresses this challenge by allowing tangled meshes for FE analysis with the use9

of the isoparametric tangled finite element method (i-TFEM). The proposed method efficiently handles10

complex configurations of tangled elements, making it suitable for real-world scenarios. By introducing11

minor modifications to standard FEM, i-TFEM offers an easy implementation and reduces to standard FEM12

for non-tangled meshes. Numerical experiments, involving both linear and nonlinear elasticity, demonstrate13

the accuracy, convergence characteristics, and applicability of the method to real-world tangled meshes. The14

results emphasize the importance of reevaluating mesh quality indicators for tangled meshes.15

Keywords: Tangled Mesh, Negative Jacobian, Foldover, Inverted elements, Mixed finite element16

1. Introduction17

Automatic high-quality hexahedral mesh generation remains an open challenge [1, 2]. To quote [3],18

“Generating high quality conformal hexahedral meshes in arbitrary 3D domains is one of the most challenging19

open problems in mesh generation.” The underlying reasons are due to the severe topological and geometric20

constraints imposed [4]: (a) the mesh must not be tangled, (b) the elements must be of high quality, (c)21

the mesh must conform to the geometry, and (d) must be topologically well-structured. Satisfying all these22

requirements is non-trivial. This paper primarily focuses on the first constraint, i.e., mesh tangling for 8-23

noded hexahedral elements. This constraint implies that the Jacobian determinant must remain positive24

over the entire mesh. The paper specifically deals with tangled meshes characterized by partially inverted25

elements, i.e. elements with negative Jacobian determinant at some (not all) Gauss points. An example of26

a tangled mesh is shown in Fig. 1; such meshes are unacceptable today since they lead to erroneous finite27

element results.28
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Figure 1: Gear mesh provided by [5]; elements in red color are concave (tangled).

State-of-the-art mesh generation methods [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] often struggle1

to produce tangle-free meshes. Many commercial software systems depend heavily on user interaction to sim-2

plify and decompose complex geometries until they become suitable for meshing [2, 21]. Although attempts3

have been made to incorporate fully automatic grid-based methods [22, 23, 24, 25, 26] into professional soft-4

ware such as CUBIT [27] and Distene SAS [28], these methods are generally considered inferior in terms of5

mesh quality [2]. To improve mesh quality, smoothing techniques [29, 30] are employed; however, generating6

tangle-free meshes is not always feasible [2, 25, 31]. As stated in [2], “maintaining the inversion-free property7

of hex-mesh poses a great challenge.” Tangled meshes are also encountered during shape optimization [32],8

large deformation simulations [33, 34], and mesh morphing [35].9

Numerous untangling algorithms have been developed to address these challenges [36, 37, 5]. However,10

untangling is not always guaranteed, as reported in multiple instances where no tangle-free solution is possible11

[5, 38, 37, 3]. As emphasized in [3], “. . . it is probably impossible to untangle the mesh under these hard12

constraints.” In fact, certain topological structures may not have an untangled mesh solution [5, 4].13

Since standard finite element method leads to erroneous results over a tangled mesh, several non-14

traditional finite element techniques such as the virtual element method [39, 40], smoothed finite element15

method [41], polygonal finite element methods [42], unsymmetric finite element such as US-ATFH8 [43] have16

been developed to directly handle some of the tangled mesh configurations. However, these do not reduce17

to standard FEM for tangle-free mesh and may require significant changes to the FEM framework. They18

also impose restrictive assumptions on element configurations. For instance, some of these methods cannot19

handle elements with non-planar surfaces [44] that are common in real-world tangled hexahedral meshes.20

Recently, an isoparametric tangled finite element method (i-TFEM) [45, 46, 47, 48] was proposed to21

handle tangled meshes. It was shown that i-TFEM reduces to standard FEM for non-tangled meshes,22
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and easily handles non-planar elements. However, i-TFEM was limited to a specific class of 3D tangled1

configurations; commonly occurring configurations such as penetrating elements could not be handled.2

In this paper, we present an improved version of i-TFEM to handle such configurations. Furthermore, the3

improved version is more efficient and easier to implement. The accuracy and effectiveness of the proposed4

3D i-TFEM are demonstrated through a series of numerical experiments involving linear and nonlinear5

elasticity. These experiments involve numerous real-world tangled meshes, showcasing the robustness of the6

method.7

The remainder of this paper is organized as follows: Section 2 presents various tangled element configu-8

rations. Section 3 provides a review of the fundamental concept underlying i-TFEM along with the i-TFEM9

formulation. This is followed by a detailed discussion of its implementation in Section 4. Section 5 presents10

the numerical experiments, and Section 6 discusses the implications of i-TFEM on mesh quality metrics.11

Finally, the conclusions are presented in Section 7.12

2. Types of Tangling13

In this paper, we consider an element to be tangled if the Jacobian determinant at any of the quadrature14

points is negative. This definition is aligned with downstream FEM. However, in the meshing community,15

an alternate definition of a scaled Jacobian at the corner nodes is often used [49].16

Consider the tangled (non-convex) 8-node hexahedral (H8) element in the physical space (x1, x2, x3) in17

Fig. 2a, and the parametric mapping ϕ from the (ξ1, ξ2, ξ3) space in Fig. 2b to the tangled element. Due18

to the non-convex nature of the element, one can show that [45] the parametric space can be divided into19

positive and negative regions, denoted by J+ and J− respectively. The corresponding physical regions are20

referred to as positive (C+) and negative (C−) components respectively; see Fig. 2c. Furthermore, for a21

point a in J− that maps to a point p in the physical space, there is a corresponding point b in J+ that22

maps to the same point p; such physical points lie outside the element. In other words, the element folds23

onto itself, leading to an overlapping region, or a fold F (see Fig. 2c).24
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Figure 2: (a) Physical space of the tangled H8 element. (b) Parametric space of the tangled element, that can be divided

into positive and negative Jacobian regions. Corresponding physical space with positive and negative components. (c) Tangled

element with the overlapping region.

Observe that the negative component C− is entirely contained within the positive component C+. As a1

result, the overlapping region can be expressed as F = C+ ∩C− = C−. In other words, the entire J− region2

maps to the overlapping region, which lies outside the physical boundary of the element. The previous work3

on i-TFEM [45] solely focused on handling such elements.4

However, in many real-world meshes, the negative component C− is not entirely contained lie within the5

positive component C+. Figure 3a illustrates a penetrating element along with the corresponding parametric6

space in Fig. 3b. One can show that for this element, only a part of J− region, shown in yellow in Fig. 3c7

maps to an overlapping region within C+ that lies outside the element, while the remainder J−, shown in8

red in Fig. 3c, maps to a region physically within the element. Visualizing these physical regions is hard but9

fortunately not necessary. We only need to understand the differences in the parametric space; methods to10

distinguish such cases are discussed later.11
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Figure 3: (a) Penetrating element (b) its parametric space; J− region is shown in yellow color (c) J− region which does not

map to the fold is shown in red color.

Furthermore, there are cases where elements have disconnected J− regions; Fig. 4 illustrates one such1

penetrating element. However, no special treatment is needed for such elements.2
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Figure 4: (a) Penetrating element with disconnected J− regions, (c) its parametric space; J− shown in yellow color.

Penetrating elements are frequently encountered in real-world meshes, and the proposed i-TFEM formu-3

lation is capable of handling such tangled elements. The case where J− spans the entire parametric space,4

i.e., a fully inverted element, is not addressed in this paper. Such elements can occur, for instance, during5

mesh morphing and hex meshing techniques which involve domain-transfer such as automatic PolyCube-6

based approaches, and will be considered in the future. Further, the default case where J− region is null7

corresponds to the non-tangled case, and i-TFEM reduces to standard FEM. In summary, we only need to8

distinguish between the following three cases:9

1. The Jacobian determinant is positive at all Gaussian points (non-tangled element).10

2. The Jacobian determinant is negative at some of the Gaussian points, and for each of these points,11

there is a corresponding point with a positive Jacobian determinant (non-penetrating tangled elements12

as in Fig. 2c).13

3. The Jacobian determinant is negative at some of the Gaussian points, and for some of these points, a14

corresponding point with a positive Jacobian determinant does not exist (penetrating tangled elements15

as in Fig. 3c).16
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The difference between case(2) and case (3) is only relevant to Section 4.2.1

Finally, it is also common for the overlapping region to be shared by multiple non-tangled elements as2

illustrated in Fig. 5. In this case, three non-tangled elements E2, E3, and E4 intersect with the overlapping3

region of the tangled element E1. However, no special treatment is needed, i.e., we only need to consider4

the parametric space of the tangled element.5
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E4

E3
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E1

Figure 5: Overlapping region shared by multiple non-tangled elements.

3. Proposed Methodology6

3.1. i-TFEM Concept7

The main idea in i-TFEM is to treat the positive and negative Jacobian regions (J+ and J−) separately

during stiffness matrix computation. This avoids all challenges associated with non-invertible mapping since

the two independent mappings:

ϕ± : J± → C±

are both invertible.8

For a tangled element Ej , let N j(ξ) be the standard shape functions (i.e., trilinear Lagrange shape9

functions for an H8 element) defined over the parametric space. Now, let N±
j be the restriction of N j to10

J±, i.e.,11

N±
j (x) := N j(ϕ

−1
± (x)) (1)

The corresponding displacement fields defined over C±
j are defined as:12

u±
j (x) := N±

j (x)ûj (2)

where, ûj is the displacement vector for jth element.13

Thus, for any point x in the fold Fj that belongs to both C+
j and C−

j , one can define two fields u+
j (x)14

and u−
j (x) due to the fold. To resolve this ambiguity, in i-TFEM, a piecewise compatibility constraint is15

enforced over the fold (see [45] for further discussion):16

u+
j (x)− u−

j (x) = 0, ∀x ∈ Fj . (3)

Now consider a simple domain Ω that is discretized into two elements shown in Fig. 6a, where one of17

the elements (E1) is tangled. For simplicity, we will assume this is a non-penetrating tangled element, but18
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the discussion applies to the penetrating case as well, unless otherwise noted. The positive and negative1

components of E1 are shown in Fig. 6b. These components overlap with each other; the overlapping region2

(fold) is denoted as F1. Element E2 is not tangled and has only one positive component (see Fig. 6c),3

i.e., E2 = C+
2 while C−

2 = ∅. However, the components C−
1 and C+

1 overlap with E2 as well, i.e., the4

overlapping region of the tangled element (F1) now intersects with E2. Construction of the stiffness matrix,5

i.e., integrating shape functions and their derivatives over a tangled mesh requires careful consideration of6

this overlap. For example, to compute the total volume of the two-element mesh, we must subtract the7

integral over C−
1 to avoid double-counting:8 ∫

E1+E2

dΩ =

∫
C+

1

dΩ +

∫
C+

2

dΩ−
∫
C−

1

dΩ (4)
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Figure 6: (a) 3-D domain discretized into two 8-node hexahedral elements. (b) Positive and negative components of the tangled

element. (c) Non-tangled element of the mesh. (d) Overlapping region intersects with the neighboring convex element.

3.2. i-TFEM formulation for linear elasticity9

Now consider an elasticity problem over the two-element mesh. The body is subjected to body forces b10

and tractions t on ∂Ωt. We will assume that the field u satisfies Dirichlet boundary conditions u = ud over11

∂Ωd. Let the material be linear elastic and the elasticity tensor be represented by D.12

Using the standard finite element method (based on the Galerkin formulation) [50], the displacements can13

be obtained, after enforcing the Dirichlet boundary conditions, by solving the following system of equations:14

Kû = f (5)

where the stiffness matrix and the forcing term are given by:15

K =
∏

j∈{1,2}

∫
Ej

(
∇N j

⊤D∇N j

)
dΩ and f =

∏
j∈{1,2}

∫
Ej

N⊤
j bdΩ. (6)
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Unfortunately, for a tangled mesh such as the one in Fig. 6, standard FEM will lead to erroneous results1

(demonstrated later in Section 5). To resolve this, we make two modifications. Firstly, the stiffness matrix2

and the forcing term are defined via integration over the components, rather than elements, where integrals3

over negative components must be subtracted to avoid double-counting (see Eq. 4). Specifically, the stiffness4

matrix associated with the tangled element E1 in Fig. 6 is computed via:5

k̂1 =

∫
C+

1

(
∇N+

1

⊤
D∇N+

1

)
dΩ −

∫
C−

1

(
∇N−

1

⊤
D∇N−

1

)
dΩ, (7)

Secondly, the compatibility constraint (Eq. 3) is enforced over every tangled element via the Lagrange6

multiplier field λ = Nλλ̂ where Nλ indicates the shape functions of the Lagrange multiplier. For the7

two-element mesh in Fig. 6a, we will require that:8 ∫
F1

δλ1 ·
(
u+
1 − u−

1

)
dΩ = 0 ∀ δλ1 ∈ L2, (8)

This can be expressed in matrix form as9

C⊤û = 0 where C =

∫
C−

1

(
N+

1 −N−
1

)⊤
NλdΩ (9)

Accordingly, in i-TFEM, Eq. 5 is replaced by the following system:

K̂û+Cλ̂ = f̂ (10a)

C⊤û = 0 (10b)

For a generic mesh with elements indexed by the set I = {1, . . . ,m}, and the tangled elements by the set10

Itangled ⊂ I, the stiffness matrix is computed as:11

K̂ =
∏
j∈I

∫
C+

j

(
∇N+

j

⊤
D∇N+

j

)
dΩ −

∏
j∈Itangled

∫
C−

j

(
∇N−

j

⊤
D∇N−

j

)
dΩ, (11)

the forcing term by:12

f̂ =
∏
j∈I

∫
C+

j

N+
j

⊤
b dΩ −

∏
j∈Itangled

∫
C−

j

N−
j

⊤
b dΩ +

∏
j∈I

∫
∂Et

j

N⊤
j t dS (12)

and the constraint matrix by:13

C =
∏

j∈Itangled

∫
Fj

(
N+

j −N−
j

)⊤
NλdΩ. (13)

In Eq. 13, the choice of Nλ and computation of the integral is discussed later in Section 4. When the mesh14

has no tangled elements, Eq. 10 reduces to Eq. 5. Further, observe that the expressions in Eq. 11 and Eq. 1215

entail integration over non-convex regions, C+
j and C−

j , associated with tangled elements. Fortunately, this16

complex operation can be circumvented, as discussed next.17
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4. i-TFEM Implementation1

4.1. Computing the Stiffness Matrix2

Recall that the stiffness matrix k̂1 associated with the tangled element E1 involves integration over the3

components C+
1 and C−

1 (see Eq. 16). Since C+
1 (C−

1 ) gets mapped to the J+ (J−) region of the parametric4

space (see Fig. 2c), the differential volume for C+
1 is given by:5

dΩ = dx1dx2dx3 = |J |dξ1dξ2dξ3. (14)

On the other hand, the differential volume for C−
1 is given by:6

dΩ = dx1dx2dx3 = −|J |dξ1dξ2dξ3. (15)

Notice the negative sign appears before |J |. This is to ensure that the volume dΩ remains positive, even7

though |J | is negative for C−
1 . Accordingly,8

k̂1 =

∫
J+

(
∇N+

1

⊤
D∇N+

1

)
|J |dξ1dξ2dξ3 +

∫
J−

(
∇N−

1

⊤
D∇N−

1

)
|J |dξ1dξ2dξ3, (16)

Since J+ ∪ J− = [−1, 1]3 covers the entire parametric space, one can employ standard Gauss quadrature9

to compute the stiffness of the element:10

k̂1 =

∫
J+∪J−

(
∇N1

⊤D∇N1

)
|J |dξ1dξ2dξ3 (17)

However, one must include the sign of the Jacobian determinant. Thus, one can avoid separate integration11

over the non-convex C+
1 and C−

1 regions.12

Further, the elemental stiffness matrix associated with the non-tangled element E2 can be computed in13

a standard fashion:14

k̂2 =

∫
J+

(
∇N+

2

⊤
D∇N+

2

)
|J |dξ1dξ2dξ3 (18)

In summary, to obtain the elemental stiffness matrices in i-TFEM, standard Gauss integration can be15

employed but the sign of the Jacobian determinant must be retained. This applies to all three cases discussed16

in Section 2. In many FEM implementations, the absolute value of the Jacobian determinant is used, and17

this will lead to erroneous results. The forcing terms are computed similarly, taking into account the sign of18

the Jacobian. In addition, the constraint matrix, discussed next, must be included if any of the Gauss points19

lie in the negative Jacobian region, i.e. if the element is tangled.20

4.2. Computing the Constraint Matrix21

In order to compute the constraint matrix C, it is necessary to determine Nλ, i.e. the shape functions for22

the Lagrange multiplier field. In the mixed system described by Eq. 10, the secondary variable λ is obtained23

from a finite element space that is smaller than that for u. Therefore, in the case of 8-node hexahedral24

9



elements, where the primary field u is approximated using standard (tri)linear functions, we choose Nλ as1

constant functions. Consequently, for the 2-element mesh depicted in Fig. 6, we can express the constraint2

matrix defined in Eq. 9 as3

C =

∫
F1

(
N+

1 −N−
1

)⊤
dΩ. (19)

Direct integration over the tangled region F1 to computeC is computationally expensive and cumbersome4

[48]. Instead, we evaluate the integrand at a sample point p ∈ F1, i.e., evaluate the C as5

C =
(
N+

1 (p)−N−
1 (p)

)⊤
. (20)

This results in three constraint equations (for the 3D elasticity field u).6

Recall that any point p within the fold can be mapped to two parametric points a and b belonging to7

J− and J+ regions respectively. The constraint can thus be stated as:8

C = (N1(b)−N1(a))
⊤

(21)

The methodology for determining the two parametric points a and b is described below.9

First, we focus on finding point a. For a tangled element Ej , a list L of Gauss points with negative10

Jacobian is generated. For a point a ∈ L, the corresponding point p in the physical space can be obtained11

via:12

p = N j(a)x̂j (22)

where x̂j is the position vector for the nodes of the element Ej .13

For non-penetrating tangled elements such as Fig. 2b, the point p corresponding to every a ∈ L lies14

within the fold. However, for penetrating elements (shown in Fig. 4a), this is not always the case, i.e., the15

point p may not necessarily reside within the fold. To determine this, we check if p lies outside the physical16

boundary of the element. If a ray extending from p intersects the element’s boundary an even number of17

times, it indicates that p lies outside the element, i.e., it resides within the folded region. Conversely, if the18

ray intersects the boundary an odd number of times, p does not lie within the fold. In this case, we consider19

another point in L and repeat the process. If all the points in L have been exhausted, we create a new list20

L with successively increasing number of Gauss points, until a point a corresponding to a fold point p is21

found. In practice, we found that 73 was sufficient for all examples considered. Note that these Gauss points22

are used to determine a fold point, and not for stiffness matrix computation.23

Having obtained a point p within the folded region of the physical space, we can now determine the24

corresponding parametric point b in J+ using the Newton-Raphson (N-R) method. An initial guess point25

for b is chosen as a corner vertex of the parametric space that has a positive Jacobian and is located farthest26

from a. Once b ∈ J+ is obtained, the constraint matrix can be readily computed using Eq. 21.27

10



4.3. Fold Shared by Multiple Elements1

When the fold is shared by multiple elements, such as in Fig. 5, where the folded region of E1 is shared2

by the elements E2, E3 and E4, observe that the total volume is given by:3 ∫
E1+E2+E3+E4

dΩ =

∫
C+

1

dΩ+

∫
C+

2

dΩ+

∫
C+

3

dΩ+

∫
C+

4

dΩ−
∫
C−

1

dΩ (23)

i.e., the integral over the negative component must be subtracted once. Furthermore, the field compatibility4

equation is as before:5

u+
1 − u−

1 = 0 in F1 (24)

Consequently, the elemental stiffness matrices, forcing vectors, and constraint matrix are computed as6

before: (1) standard stiffness matrices k̂i , i = 1, . . . , 4 are computed for all elements using standard Gauss7

integration while retaining the sign of the Jacobian (the forcing vectors are computed similarly), and (2) the8

constraint matrix is computed by evaluating Eq. 20 at a point within the fold F1, employing the method9

described above. No additional treatment is needed.10

4.4. Nonlinear Analysis11

The proposed i-TFEM can be easily generalized to finite elasticity problems with geometric and material12

non-linearities. We employ the total Lagrangian formulation to model the deformation; a detailed discussion13

can be found in [51, 52]. In standard FEM, the structural equilibrium can be captured via the residual force14

vector R as15

R(û) = f int − fext = 0, (25)

where fext is the external nodal load vector and f int is the internal nodal load.16

However, in i-TFEM, the constraint matrixC must be incorporated into the equilibrium equation (Eq. 25)

via the Lagrange multipliers λ̂ as follows:

R̂(û) +Cλ̂ = 0 (26)

C⊤û = 0 (27)

Here, R̂ are computed in the same manner as R in the standard FEM, but including the sign of the Jacobian17

determinant.18

Since the problem is nonlinear, the Newton-Raphson method is employed to obtain the displacement and19

Lagrange multiplier incrementally. The incremental displacements ∆ûn and Lagrange multipliers ∆λ̂
n
are20

obtained in i-TFEM by solving (see [46] for details):21 K̂t C

C⊤ 0

∆ûn

∆λ̂
n

 =

−
(
R̂+Cλ̂

n
)

0

 . (28)

11



where, K̂t is the standard tangent stiffness matrix defined as1

K̂t = ∂R̂(ûn−1)/∂û. (29)

The constraint matrix C can be obtained as described in Section 4.2. The displacements and Lagrange

multipliers at nth Newton-Raphson iteration are updated via:

ûn = ∆ûn + ûn−1; λ̂
n
= ∆λ̂

n
+ λ̂

n−1
.

When the mesh is not tangled, i-TFEM reduces to the standard FEM. Thus, Eq. 28 reduces to:2

K̂t∆ûn = −R̂. (30)

5. Numerical Experiments3

In this section, the proposed 3D i-TFEM is demonstrated by solving benchmark linear and nonlinear4

elasticity problems using various synthetically generated and real-world tangled meshes. The benchmark5

examples presented in this section have been previously employed to validate several numerical techniques6

[40, 53, 54, 55, 56]. Numerical experiments are conducted under the following conditions:7

� For the purpose of numerical integration, standard Gaussian quadrature (2× 2× 2) is employed for all8

the hexahedral elements. Thus, the Jacobian is computed at the corresponding Gauss points located9

at
(
±1/

√
3, ±1/

√
3, ±1/

√
3
)
.10

� In standard FEM, the absolute value of the Jacobian determinant is employed (to be consistent with11

commercial FEM systems such as ANSYS). Without the absolute value, and without the constraint,12

standard FEM can lead to non-nonsensical results [45], or result in non-convergence (see Section 5.1.4).13

� Homogeneous isotropic material is assumed, unless otherwise mentioned.14

� The implementation is in MATLAB R2022a, on a standardWindows 10 desktop with Intel(R) Core(TM)15

i9-9820X CPU running at 3.3 GHz with 16 GB memory.16

The accuracy of numerical solutions is assessed using the following measures of error in the computed17

displacement field. The relative L2 norm error is defined as18

||uref − u||L2(Ω)

||uref||L2(Ω)

=


∫
Ω

|uref − u|2 dΩ∫
Ω

|uref|2 dΩ


0.5

(31)

and the relative error in energy norm as:19

eE =


∫
Ω

(
∇uref −∇u

)⊤
D
(
∇uref −∇u

)
dΩ∫

Ω

(∇uref)
⊤
D (∇uref) dΩ


0.5

(32)

where uref is the reference solution and u is the solution under consideration.20

12



5.1. Synthetic Meshes1

We consider here synthetically-generated regular (non-tangled) and tangled meshes. Specifically, consider2

a cubic domain Ω = (−1, 1)
3
that is first discretized using 3 × 3 × 3, i.e., 27 cubic elements as shown in3

Fig. 7a, i.e., each element side is of length 2/3. To create a tangled mesh, we modify the mesh in two steps:4

1. We convert each element of the regular mesh into a 2-element unit, as depicted in Fig. 7b, resulting in

54 elements. Positions of the new re-entrant nodes (nodes 9 and 10) are given as

x
(9)
3 = x

(1)
3 , x

(9)
i = x

(1)
i + (0.5− d) si, i = 1, 2 (33a)

x
(10)
3 = x

(5)
3 , x

(10)
i = x

(5)
i + (0.6− d) si, i = 1, 2 (33b)

where si is the element size in ith direction and the parameter d controls the extent of tangling5

(discussed later).6

2. We then move the node B (highlighted in red in Fig. 7a), using the same parameter d, as follows:

xB
d = x(B) − d× [4.2s1 1.75s2 0.7s3]

⊤. (34a)

The value of the parameter d is varied from 0 to 0.47. The front view of a resulting tangled mesh for d = 0.47

is illustrated in Fig. 7c.8
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Figure 7: (a) Regular mesh (with 27 elements). (b) Non-tangled element converted to tangled element (c) Front view of the

tangled mesh.

The tangled mesh (Fig. 7c) has 54 elements; out of which 31 elements are tangled. Fig. 8 illustrates9

some of the tangled elements. These elements are non-convex with non-planar faces. Moreover, some of the10

tangled elements (e.g. see Fig. 8b, 8c, 8e) exhibit penetration. Since the mesh (Fig. 7c) contains tangled11

elements of various configurations, it can be employed to rigorously test the effectiveness of i-TFEM.12
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Figure 8: Some of the tangled elements present in the mesh shown in Fig. 7c.

5.1.1. Displacement Patch Test1

For the patch test, an arbitrary linear field is chosen as the exact (reference) solution:

u1 = 0.579x1 + 0.246x2 + 0.482x3 − 0.374 (35a)

u2 = 0.486x1 + 0.351x2 + 0.947x3 − 0.620 (35b)

u3 = 0.512x1 + 0.746x2 + 0.548x3 − 0.480. (35c)

Corresponding to this field, Dirichlet conditions are applied to the left face of the mesh in Fig.7c, while2

Neumann condition are applied to the remaining faces. The problem is solved over the tangled meshes by3

varying d using standard FEM and i-TFEM (the non-tangled mesh in Fig. 7a is not used for this experiment).4

To compare the two methods, the L2 and energy error norms are plotted in Fig. 9a and Fig. 9b respectively.5

Observe that, both FEM and i-TFEM provide machine precision accuracy for 0 ≤ d ≤ 0.15, as the Jacobian6

at all the Gauss points remains positive (indicating that the mesh is not tangled and i-TFEM reduces to7

FEM). However, for d ≥ 0.2, the Jacobian determinant becomes negative at one or more Gauss points,8

leading to a significant error in FEM. In contrast, i-TFEM consistently achieves machine precision accuracy9

for all values of d. In other words, i-TFEM successfully passes this patch test over the tangled mesh, while10

standard FEM does not.11
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Figure 9: Patch test for FEM and i-TFEM: (a) L2 error norm and (b) energy error norm.

5.1.2. Strain energy convergence: Cubic cantilever1

In this experiment, we analyze i-TFEM for its convergence characteristic with regard to the strain energy.2

We consider a cubic cantilever (see Fig. 10) subjected to a uniform pressure p = 1 on its upper face [53], and3

fixed over the face x1 = 0. The material is assumed to be linear elastic, with Young’s modulus E = 1 and4

Poisson’s ratio ν = 0.25.5

The exact solution to the problem is unknown. However, a reference solution is reported in [53], obtained6

using standard FEM with a very fine mesh consisting of 30,204 nodes and 20,675 ten-node tetrahedral7

elements. The reference strain energy is 0.9486, and the vertical deflection of 3.3912 at point A, located at8

(1, 1, 0).9

p
A(1, 1, 0)

x1

x2

x3

Figure 10: Cubic cantilever subjected to uniform pressure.

We solve this problem using both standard FEM and i-TFEM on tangled and non-tangled meshes of10

various sizes. Regular and tangled meshes are constructed by repeating the units described previously11

(Fig. 7a for regular mesh and Fig. 7c for tangled mesh). The regular and tangled repeating units (containing12

27 and 54 elements respectively) are stacked in a nr × nr × nr configuration, where nr denotes the number13

of repeating units in each direction; nr is varied from 1 to 8 to study the convergence characteristics. For14
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the tangled case, the extent of tangling was fixed by setting d = 0.4.1

Fig. 11a shows the strain energy convergence for i-TFEM in comparison with FEM over tangled and2

regular (non-tangled) mesh. It is evident that the strain energy obtained using i-TFEM converges to the3

reference solution, unlike FEM over the tangled mesh.4

Similarly, Fig. 11b illustrates the convergence of the tip deflection at point A(1, 1, 0) obtained using the5

i-TFEM and FEM. Once again, observe that i-TFEM converges to the reference solution for the tangled6

meshes, while FEM fails to do so.7
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Figure 11: Convergence of (a) strain energy and (b) vertical displacement at point A for the cubic cantilever problem.

In the above convergence study, the extent of tangling was fixed with d = 0.4. Here, we study the effect8

of tangling on the computed solutions by varying d from 0 to 0.47 for a fixed mesh size, with nr = 3. As seen9

in the previous experiment, as d increases, tangling increases and FEM deviates from the expected results,10

as opposed to i-TFEM (see Fig. 12).11
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Figure 12: Effect of tangling on (a) strain energy and (b) vertical displacement at point A for the cubic cantilever problem.

5.1.3. Convergence study: Beam under torsion1

Next, we study the performance of i-TFEM for a cantilever beam loaded in torsion [40]. The domain for

this problem is (−1, 1)× (−1, 1)× (0, 10); the material is linear isotropic with Young’s modulus E = 25 and

Poisson’s ratio ν = 0.3. Dirichlet boundary conditions are applied to the faces at x3 = 0 and x3 = 10. The

expressions for the stresses are [57]:

σ11 = σ22 = σ12 = σ33 = 0

σ31 =
8Eβ

π2 (1 + ν)

∞∑
n=1

(−1)n

(2n− 1)
2
cosh [(2n− 1)π/2]

cos [(2n− 1)πx1/2] sinh [(2n− 1)πx2/2] (36)

σ(23) =
Eβ

2 (1 + ν)

(
2x1 +

∞∑
n=1

16(−1)n

π2 (2n− 1)
2
cosh [(2n− 1)π/2]

sin [(2n− 1)πx1/2] cosh [(2n− 1)πx2/2]

)

and displacements, up to rigid body motion, are given by

u1 = −βx2x3, u2 = βx3x1,

u3 = β

(
x1x2 +

∞∑
n=1

32(−1)n

π3 (2n− 1)
3
cosh [(2n− 1)π/2]

sin [(2n− 1)πx1/2] sinh [(2n− 1)πx2/2]

)
. (37)

Here β = 0.1 is the twist per unit length which is proportional to the applied torque.2

As in the previous examples, we create a tangled mesh (d = 0.4) and a regular mesh using their respective3

repeating units. In this particular problem, we stack repeating units in a configuration of nr × nr × 5nr.4

To visualize the deformation and the stress field resulting from the torsional load, we present representative5

i-TFEM results for the tangled mesh with nr = 4 in Fig. 13.6
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Figure 13: Deformed configuration of the beam under torsion.

We study the convergence characteristics of i-TFEM by employing displacement L2 error norm defined1

in Eq. 31. In addition, an error measure for the stress field (eσ) is employed and defined as (to be consistent2

with [40]):3

eσ =
||σref − σ||L2(Ω)

||σref||L2(Ω)

. (38)

As evident from the convergence plots in Fig. 14, we have close to second-order convergence in displacements4

and first-order convergence in stresses, similar to the regular meshes. On the other hand, FEM over tangled5

mesh fails to converge.6
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Figure 14: Convergence of (a) displacement error and (b) stress error for the torsion problem.

5.1.4. Large deformation analysis7

To evaluate the performance of i-TFEM in the presence of geometric and material nonlinearities, we8

consider the cantilever beam problem [53] occupying the domain (−10, 10) × (−1, 1) × (0, 2), subjected to9

a uniformly distributed vertical load p = 8000 applied in 5 load steps. The material is assumed to be10

hyperelastic; specifically, we employ the compressible isotropic generalized neo-Hookean material model11
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where the strain energy density is given by [51, 52]:1

ΨGNH (u) =
µ

2

(
J
−2/3
F trB − 3

)
+

K

2
(JF − 1)

2
. (39)

where µ = 1.154× 107 and K = 2.5× 107 are the material parameters (equivalent to shear and bulk moduli2

respectively in the small strain limit). Further, JF = detF , B = FF⊤ is the left Cauchy-Green deformation3

tensor, and F is the deformation gradient.4

Regular and tangled meshes (d = 0.4) are created by stacking the respective repeating units in the5

10nr×nr×nr arrangement. The deformed configuration for tangled mesh with nr = 1 obtained via i-TFEM6

is shown in Fig. 15a. A convergence study is then carried out by varying nr. The vertical displacement u2 at7

the top-right corner point A for the two methods is plotted against the mesh index nr in Fig. 15b. For the8

tangled mesh, similar to the linear elasticity problems presented earlier, i-TFEM converges to the expected9

solution while standard FEM converges to an incorrect solution.10
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Figure 15: (a) Deformed configuration of the cantilever beam with tangled mesh using i-TFEM. (b) Convergence study.

5.2. Real-World Meshes11

In this section, the performance of i-TFEM is evaluated over real-world tangled meshes generated by the12

state-of-the-art mesh-generating algorithms.13

5.2.1. Connecting rod14

We now consider a connecting rod mesh (mesh data obtained from [5]) illustrated in Fig. 16a. Out of15

the total 11316 hexahedral elements of the mesh, 16 elements are tangled; some are highlighted in Fig. 16a.16

Though it is possible to untangle this mesh [5], i-TFEM completely eliminates the need for untangling. Here,17

we compare the results for tangled and untangled meshes.18

A linear quasi-static elasticity problem is set up as shown in Fig. 16a: an axial load of P = 300N is19

applied on one end, while the other end is fixed. The material properties are as follows: Young’s modulus20

E = 2.05× 107 and Poisson’s ratio ν = 0.28.21
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Figure 16: (a) Connecting rod mesh [5] with boundary conditions; elements in red color are tangled. (b) von-Mises stress field

for tangled mesh using i-TFEM; (b) von-Mises stress field for untangled mesh.

Fig. 16b and Fig. 16c illustrate the von-Mises stress field for the tangled mesh (using i-TFEM) and1

untangled mesh respectively. The total computational time was 10.47s for the tangled mesh using i-TFEM,2

and 10.16 for untangled mesh, i.e., the overhead due to i-TFEM was found to be minimal.3

5.2.2. Synthetic Solution4

We now consider additional real-world tangled meshes. To evaluate the performance of i-TFEM, the5

following synthetic solution is used:6

u =
[
ζ31ζ2ζ

2
3 + 2ζ21ζ

3
2ζ

2
3 + 0.5 sin(2πζ1); ζ21ζ

3
2ζ3 + 2ζ21ζ

2
2ζ

3
3 ; ζ1ζ

2
2ζ

3
3 + 2ζ31ζ

2
2ζ

2
3

]⊤
/100 (40)

where ζi are computed by dividing each component xi by its corresponding length-scale Li, i.e., ζi = xi/Li.7

Given the analytical solution, stresses can be computed as σij = Cijklεij where εij = 0.5(ui,j +uj,i) and Cijkl8

is the elasticity tensor. The appropriate body force b can thus be computed by employing the equilibrium9

equation: σij,j + bi = 0. The problem is solved using this body force with the material properties, E =10

400/3, ν = 1/3. The dirichlet boundary condition is imposed over the entire boundary. The resultant11

displacement fields are shown in Fig. 17 for various tangled meshes. These tangled meshes (available at12

hexalab mesh repository [58]) are produced from a range of state-of-the-art mesh generators [7, 8, 11, 58].13

For instance, the mesh in Fig. 17c is generated using a PolyCube based approach [11]. On the other hand,14

the tangled mesh in Fig. 17d is created using frame-field based approach [58]. Fig. 17b is produced semi-15

manually using dual-sheet modeling [8] while automatic block decomposition (LoopyCuts) [7] is employed16

in Fig. 17a, Fig. 17e and Fig. 17f. As one can observe, despite numerous tangling elements, the L2 error17

is within the acceptable/nominal range. Note that, in the meshing literature, the ‘scaled Jacobian’ [49]18

computed at the nodes is used, and is therefore reported in Fig. 17 as well.19
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Figure 17: Displacement plots obtained via i-TFEM for the practically occurring tangled meshes. The red elements in the inset

are tangled.

Next, we compare the real-world tangled meshes with their corresponding untangled meshes provided in1

[5]. The problem with the synthetic solution (Eq. 40) described above is solved using the two methods: i-2

TFEM for tangled meshes and standard FEM for untangled meshes. The results, presented in Table 1, reveal3

that the L2 error norm obtained via i-TFEM over tangled meshes is comparable with that obtained over the4

corresponding untangled meshes. Moreover, the time required to handle tangled elements is minimal. This5

suggests that i-TFEM can provide solutions with comparable accuracy over tangled meshes, thus eliminating6

the need for mesh untangling.7
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Table 1: Comparison of solutions over tangled and untangled meshes provided in [5].

Model [5]
Min. Scaled Jacobian No. of Hexahedra Relative L2 error Time (second)

Tangled Untangled Tangled/Total Tangled Untangled Tangled Untangled

cap -0.94 0.11 19/4420 4.23 ×10−2 4.36 ×10−2 4.73 4.13

block -0.70 0.25 10/2520 1.58 ×10−2 1.58×10−2 2.02 1.87

bust -0.60 0.11 6/5258 3.71×10−2 3.93×10−2 5.15 5.11

linking rod -0.39 0.55 8/11316 2.13×10−3 2.12×10−3 10.46 10.17

6. Mesh Quality Indicators for Tangled Elements1

The goal of a good quality indicator is to provide insights into the accuracy of numerical methods [60, 61].2

Since it is generally assumed that higher mesh quality leads to improved accuracy in FEM solutions, mesh3

generators and optimizers strive to maximize mesh quality. Numerous quality indicators have been developed4

such as the Jacobian, Oddy metric, aspect ratio, skewness, taper, stretch, warpage (see [60, 49] for details).5

For higher order elements too, various quality measures have been developed that account for deviation in6

shape, size, skewness, degeneracy and so on [62, 63, 64, 65].7

The scaled Jacobian is one of the most extensively used mesh quality indicators in linear [7, 37, 38, 66, 67]8

and higher-order finite elements [68, 69, 64, 62, 70, 71, 65] as well as spline-based discretizations used in9

isogeometric analysis [72, 73, 74, 75]. To compute the 3× 3 Jacobian matrix for 8-node element, different10

approaches are taken by the geometric processing/meshing and numerical analysis/FEM communities. In11

the meshing community, Jacobian matrix is evaluated at each corner of the hexahedral element using the12

three ordered normalized edge vectors [76]. On the other hand, in the FEM community, the Jacobian matrix13

is evaluated at each quadrature (Gauss) point using the finite element basis functions. This is because, the14

standard FEM gives invalid results when negative Jacobian is encountered at one or more of its quadrature15

(Gauss) points, rather than corners. Hence, in this paper too, the Jacobian matrix is evaluated at the Gauss16

points using the finite element basis functions.17

Traditionally, tangled elements are deemed to be invalid, and/or assigned a quality of zero [49]. Nonethe-18

less, using i-TFEM, tangled meshes can provide comparable or even superior accuracy compared to regular19

meshes. To illustrate, let us consider the torsion problem described in Section 5.1.3. The beam is discretized20

using a 2-element tangled repeating unit described in Fig. 7. The positions of nodes 9 and 10 in Fig. 721

are varied (but point B is kept stationary for simplicity). These repeating units, each with 54 elements,22

are arranged in a 2 × 2 × 10 configuration, resulting in a total of 270 elements. To assess mesh quality,23

the determinant of the Jacobian is computed at each Gauss point and divided by the determinant of the24

Jacobian of a perfect hexahedron (for scaling purposes). We then solve the torsion problem and evaluate25

the error.26
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In Fig. 18a and Fig. 18b, we plot the relative L2 norm error in displacement and stress respectively as1

a function of the minimum Jacobian within the mesh. As one can observe, accuracy improves as we move2

away from zero Jacobian, whether in the positive or negative direction. Similar observations can be drawn3

from the data provided in Table 1. Fig. 18c illustrates the condition number of the i-TFEM stiffness matrix4

as a function of the minimum Jacobian; as one can observe the condition number remains stable.5
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Figure 18: Plot of (a) displacement error (b) stress error, and (c) condition number vs minimum Jacobian.

This suggests that one must reevaluate mesh quality indicators to accommodate tangled elements. One6

potential indicator, for instance, could be the absolute value of the Jacobian instead of the signed value. In7

other words, we can eliminate the tangle-free constraint on mesh generators (see Section 1). Further research8

is needed since these findings are specific to the problem and mesh considered.9
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7. Conclusions1

This paper addresses the challenge of handling tangled meshes that are conventionally considered un-2

acceptable due to the erroneous results they produce. A 3D isoparametric tangled FEM (i-TFEM) was3

proposed to handle tangled hexahedral elements.4

To implement i-TFEM, only two changes need to be made to an existing FEM code: (a) the Jacobian5

determinant sign must be retained, and (b) a constraint equation must be included. The resulting linear6

system is symmetric, and i-TFEM reduces to standard FEM when the mesh is regular.7

Further, through a series of examples involving linear and nonlinear elasticity, we demonstrated the8

robustness and efficiency of i-TFEM. The numerical experiments demonstrate that i-TFEM passes the patch9

test, and provides optimal convergence rate over severely tangled meshes. The experiments utilized numerous10

real-world tangled meshes, demonstrating the viability of the method in practical scenarios. Finally, the11

additional computational time required to implement i-TFEM was found to be minimal.12

The results emphasize the need for a new definition of mesh quality that accommodates tangled elements,13

and potentially a new class of mesh generators. Further research relating mesh quality and solution accuracy14

[66, 77] is required in the context of tangled meshes.15

Meshes containing fully inverted elements were not addressed in this work, but will be addressed in the16

future. We are currently extending i-TFEM to structural dynamics, thermo-elasticity, and fluid-structure17

interaction. Additionally, we plan to extend i-TFEM to higher order 3D elements [78, 79, 80, 71] as well as18

isogeometric analysis [81] where tangling is known to occur [82, 83, 84], and leads to erroneous results.19

Compliance with ethical standards20

The authors declare that they have no conflict of interest.21

Acknowledgments22

The authors would like to thank the support of the National Science Foundation through grant CMMI23

1715970, and the U. S. Office of Naval Research under PANTHER award number N00014-21-1-2916 through24

Dr. Timothy Bentley.25

References26

[1] T. Blacker, Automated conformal hexahedral meshing constraints, challenges and opportunities, Engi-27

neering with Computers 17 (3) (2001) 201–210.28

[2] N. Pietroni, M. Campen, A. Sheffer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F.29

Remacle, M. Livesu, Hex-mesh generation and processing: a survey, ACM Transactions on Graphics30

(TOG) 44 (2) (2022) 1–44.31

24



[3] M. Reberol, K. Verhetsel, F. Henrotte, D. Bommes, J.-F. Remacle, Robust topological construction1

of all-hexahedral boundary layer meshes, ACM Transactions on Mathematical Software 49 (1) (2023)2

1–32.3

[4] J. F. Shepherd, C. R. Johnson, Hexahedral mesh generation constraints, Engineering with Computers4

24 (3) (2008) 195–213.5

[5] M. Livesu, A. Sheffer, N. Vining, M. Tarini, Practical hex-mesh optimization via edge-cone rectification,6

ACM Transactions on Graphics (TOG) 34 (4) (2015) 1–11.7

[6] M. Mandad, R. Chen, D. Bommes, M. Campen, Intrinsic mixed-integer polycubes for hexahedral mesh-8

ing, Computer Aided Geometric Design 94 (2022) 102078.9

[7] M. Livesu, N. Pietroni, E. Puppo, A. Sheffer, P. Cignoni, Loopycuts: Practical feature-preserving block10

decomposition for strongly hex-dominant meshing, ACM Transactions on Graphics (TOG) 39 (4) (2020)11

121–1.12

[8] K. Takayama, Dual sheet meshing: An interactive approach to robust hexahedralization, in: Computer13

graphics forum, Vol. 38, Wiley Online Library, 2019, pp. 37–48.14

[9] H. Liu, P. Zhang, E. Chien, J. Solomon, D. Bommes, Singularity-constrained octahedral fields for15

hexahedral meshing., ACM Trans. Graph. 37 (4) (2018) 93–1.16

[10] X. Fang, W. Xu, H. Bao, J. Huang, All-hex meshing using closed-form induced polycube, ACM Trans-17

actions on Graphics (TOG) 35 (4) (2016) 1–9.18

[11] M. Livesu, N. Vining, A. Sheffer, J. Gregson, R. Scateni, Polycut: Monotone graph-cuts for polycube19

base-complex construction, ACM Transactions on Graphics (TOG) 32 (6) (2013) 1–12.20

[12] T. Jiang, J. Huang, Y. Wang, Y. Tong, H. Bao, Frame field singularity correctionfor automatic hexa-21

hedralization, IEEE Transactions on Visualization and Computer Graphics 20 (8) (2013) 1189–1199.22

[13] Y. Li, Y. Liu, W. Xu, W. Wang, B. Guo, All-hex meshing using singularity-restricted field, ACM23

Transactions on Graphics (TOG) 31 (6) (2012) 1–11.24

[14] J. Gregson, A. Sheffer, E. Zhang, All-hex mesh generation via volumetric polycube deformation, in:25

Computer graphics forum, Vol. 30, Wiley Online Library, 2011, pp. 1407–1416.26

[15] M. Nieser, U. Reitebuch, K. Polthier, Cubecover–parameterization of 3d volumes, in: Computer graphics27

forum, Vol. 30, Wiley Online Library, 2011, pp. 1397–1406.28

[16] J. Huang, Y. Tong, H. Wei, H. Bao, Boundary aligned smooth 3d cross-frame field, ACM transactions29

on graphics (TOG) 30 (6) (2011) 1–8.30

25



[17] Y. Zhang, C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing from volumetric data,1

Computer methods in applied mechanics and engineering 195 (9-12) (2006) 942–960.2

[18] Y. Zhang, T. J. Hughes, C. L. Bajaj, An automatic 3d mesh generation method for domains with3

multiple materials, Computer methods in applied mechanics and engineering 199 (5-8) (2010) 405–415.4

[19] J. Qian, Y. Zhang, Automatic unstructured all-hexahedral mesh generation from b-reps for non-manifold5

cad assemblies, Engineering with Computers 28 (2012) 345–359.6

[20] Y. Yu, X. Wei, A. Li, J. G. Liu, J. He, Y. J. Zhang, Hexgen and hex2spline: polycube-based hexahedral7

mesh generation and spline modeling for isogeometric analysis applications in ls-dyna, in: Geometric8

Challenges in Isogeometric Analysis, Springer, 2022, pp. 333–363.9

[21] J. H.-C. Lu, W. R. Quadros, K. Shimada, Evaluation of user-guided semi-automatic decomposition10

tool for hexahedral mesh generation, Journal of Computational Design and Engineering 4 (4) (2017)11

330–338.12
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