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Abstract 1 

 Most engineering artifacts are designed and analyzed 2 
today within a 3-D computer aided design (CAD) 3 
environment. However, slender objects such as beams are 4 
designed in a 3-D environment, but analyzed using a 1-D 5 
beam element, since their 3-D analysis exhibits locking 6 
and/or is computationally inefficient. This process is 7 
tedious and error-prone. 8 

 Here, we propose a dual-representation strategy for 9 
designing and analyzing 3-D beams, directly from within a 10 
3-D CAD environment. The proposed method exploits 11 
classic 1-D beam physics, but is implemented within a 3-D 12 
CAD environment by appealing to the divergence theorem. 13 
Consequently, the proposed method is numerically and 14 
computationally equivalent to classic 1-D beam analysis 15 
for uniform cross-section beams. But, more importantly, it 16 
matches the accuracy of a full-blown 3-D finite element 17 
analysis for non-uniform beams.  18 

1. Introduction 19 

  Engineering artifacts are largely designed today within 20 
a 3-D computer aided design (CAD) environment for at 21 
least 3 reasons: (1) CAD models are unambiguous [1], (2) 22 
visualization and manufacturing-planning is easier within 23 
a 3-D environment [2], and (3) data exchange of 3-D 24 
models is well established[3]. Furthermore, most 3-D 25 
components are analyzed via the popular 3-D finite 26 
element analysis [4], that is tightly integrated with CAD 27 
systems today. 28 

 However, high-aspect ratio beams pose unique 29 
challenges to 3-D FEA. Specifically, consider the beam 30 
problem in Figure 1a. If one uses a coarse finite element 31 
mesh (element size>>thickness) as in Figure 1b, the 32 
presence of poor-quality elements lead to Poisson locking 33 
[5]. 34 

 35 

(a) A 3-D beam problem 36 

  37 

(b) A coarse mesh. (c) A fine mesh. 38 

Figure 1: Finite element analysis of a 3-D beam. 39 

 On the other hand, if a high quality mesh (element size 40 
~ thickness) is used, the computational cost grows rapidly 41 
with the aspect ratio as illustrated in Figure 2 (aspect ratio 42 

is the overall length divided by the thickness of the hollow 43 
beam). 44 

 45 

Figure 2: 3-D FEA cpu-time vs. aspect-ratio of a beam, for 46 
a high-quality mesh. 47 

 Thus thin beams must typically be analyzed using a 1-D 48 
beam element, using classic dimensional reduction. 49 
Specifically, given a 3-D beam such as the one in Figure 3a, 50 
the analyst must create a 1-D beam-element, and assign 51 
the appropriate cross-sectional properties as in Figure 3b. 52 
The 3-D surface tractions are also translated into 53 
equivalent 1-D forces and moments, and finally the 1-D 54 
beam problem is solved via 1-D beam analysis.  55 

 56 

Figure 3: (a) A uniform cross-section beam, (b) 1-D classic 57 
dimensional reduction. 58 

 The data-transfer between the 3-D CAD environment 59 
and 1-D analysis environment is cumbersome and error-60 
prone. For example, consider the beam in Figure 4; 61 
extracting its cross-sectional properties is non-trivial, and 62 
so is the transfer of the traction forces.  Finally, once the 1-63 
D beam is analyzed and optimized, the 3-D CAD model 64 
must be reconstructed to reflect the design changes. 65 

 66 
Figure 4: Traction forces on a cantilevered beam. 67 
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 Indeed, it is well recognized today that direct 3-D CAD-1 
based analysis is highly desirable [6]. Amongst the various 2 
3-D analysis techniques that are known today, the most 3 
‘obvious’ choice is 3-D finite element analysis (FEA). 4 
However, as mentioned earlier [5], 3-D FEA of thin 5 
structures leads to a locking phenomena and is 6 
computationally unattractive. 7 

 Alternate and specialized 3-D analysis techniques have 8 
been proposed for analyzing thin structures. One such 9 
method is based on the concept of solid-shell elements 10 
where relatively low order shape functions are used across 11 
the thickness to overcome ill-conditioning, etc. However, 12 
solid-shell elements entail a priori orientation of the finite 13 
element mesh [7]; this can pose difficulties during mesh 14 
generation. Reduced integration techniques have also been 15 
proposed by several researchers to suppress the 16 
deficiencies of standard 3-D FEA [8, 9]. However, under-17 
integration causes generation of hourglass modes and 18 
needs stabilization. Alternately, one can exploit hybrid or 19 
mixed formulations [6], where both displacements and 20 
stresses are treated as free variables. These hybrid 21 
elements typically exhibit higher accuracy than regular 22 
elements when modeling 3-D thin structures [6]. There are 23 
however two challenges: (1) the computational cost of 24 
hybrid formulation is significant, and (2) the accuracy 25 
does not match the accuracy of classic 2-D mid-surface 26 
analysis. More recently, an algebraic-reduction method 27 
was proposed in [10] for CAD-integrated analysis of 28 
beams. However, algebraic reduction entails specialized 29 
assembly procedures, and computationally more 30 
expensive than classic 1-D beam analysis. 31 

 Given these limitations, we propose here a dual-32 
representation method for analyzing 3-D beams. The 33 
proposed method exploits classic 1-D beam physics, but is 34 
implemented within a 3-D CAD environment by appealing 35 
to the divergence theorem. Since the physics is 36 
represented in 1-D and the geometry co-exists in 3-D, the 37 
proposed method is referred to as a dual-representation 38 
method.  39 

 The paper is organized as follows. In Section 2, classic 40 
beam theory for uniform cross-section beams is briefly 41 
reviewed, followed by typical 1-D methods employed today 42 
for analyzing non-uniform cross-section beams. Then, in 43 
Section 3, the dual representation method is described for 44 
static and modal analysis of non-uniform cross-section 45 
beams via Euler-Bernoulli and Timoshenko theories. This 46 
is followed by numerical experiments in Section 4, where 47 
we show that the proposed method matches the 48 
automation of 3-D FEA for complex beams, while it 49 
matches the accuracy of 1-D analysis. In Section 6, we 50 
conclude with open issues and future work.  51 

 For the remainder of the paper, beams are assumed to 52 
be oriented along x direction, and the bending direction is 53 
assumed to be along z, as illustrated in Figure 3. 54 

2. Analysis of Beams: Brief Review 55 

 We now briefly review well-established 1-D beam 56 
analysis methods (classic dimensional reduction). The 57 
review serves as a foundation for the proposed method. 58 

 Consider the uniform cross-section beam illustrated in 59 
Figure 3a. In the Euler-Bernoulli formulation, it is 60 
assumed that the plane normal to the neutral axis remains 61 

planar, and perpendicular to the neutral axis [11, 12]. 62 
Mathematically, this implies that the 3-D displacements 63 
can be expressed as: 64 

 
0,

0

( , , )

( , , ) ( )

xu x y z zw

w x y z w x

≈ −

≈
 (2.1) 65 

where 0( )w x  is a 1-D function defined over the 1-D beam 66 

axis;  typically, 0( )w x  is approximated via Hermite 67 

functions ( )iH x  [12]: 68 

 { }0 1 2 3 4 0ˆ( ) ( ) ( ) ( ) ( )w x H x H x H x H x w=  (2.2) 69 

By considering the axial strain energy xx xxε σ , one can show 70 

that the components of the Euler-Bernoulli stiffness 71 
matrix are given by [11, 12]: 72 

 2
, ,( ) ( ) ;   , 1..4ij i xx j xxK Ez H x H x d i j

Ω

= Ω =∫  (2.3) 73 

Observe that the integral is over the 3-D beam Ω  (a trivial 74 
but important observation). To reduce the integration to 1-75 
D, one can appeal to the fact that Ω  can be expressed as 76 

[0, ]l A⊗ , where A  is the cross-sectional area, resulting in: 77 

 2
, ,

0

( ) ( )
l

ij i xx j xx

A

K Ez H x H x dAdx= ∫ ∫  (2.4) 78 

 Integrating over z , we have: 79 

 , ,

0

( ) ( )
l

ij i xx j xxK EIH x H x dx= ∫  (2.5) 80 

where: 81 

 2

A

I z dA= ∫  (2.6) 82 

Further, one can symbolically integrate Equation (2.5) 83 

over x  to get a closed-form expression for ijK [12].  84 

 Consider now the non-uniform beam in Figure 4. Since 85 

the cross-section ( )A x  is a function of x , ijK is given by:  86 

 2
, ,

0 ( )

( ) ( )
l

ij i xx j xx

A x

K Ez H x H x dAdx= ∫ ∫  (2.7) 87 

If ( )A x  is sufficiently simple, Equation (2.7)  can evaluated 88 

analytically. For example, tapered Timoshenko beams are 89 
addressed in [13].  Filleted beams are considered in [14] 90 
where lumped-parameter are developed as an addition to 91 
the uniform beam model. For multi-stepped beams, the 92 
composite element method is proposed in [15] where the 93 
beam can be treated as a uniform beam from a finite 94 
element perspective. While these address very specific 95 
beam configurations, extraction of beam properties 96 
requires extensive CAD programming, and is challenging. 97 
We show next, how one can avoid case-by-case analysis by 98 
integrating the above shape functions over the boundary of 99 
the CAD model, and therefore does not entail extraction of 100 
cross-sectional properties. 101 

3. Dual-Representation Analysis 102 
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 As mentioned earlier, in the proposed method, the 1 
physics is captured in 1-D beam physics, but the geometry 2 
is retained in 3-D.  3 

3.1 Stiffness Matrix for Symmetric Beams  4 

 Consider again Equation (2.3), i.e., 5 

 

2
, ,( ) ( )ij i xx j xxK Ez H x H x d

Ω

= Ω∫  (2.8) 6 

Since the integral is over the 3-D beam Ω , instead of 7 
proceeding to Equation (2.7), let us recall the divergence 8 
theorem that states that for any differentiable vector 9 

function F
�

 [16]: 10 

 Fd F nd

Ω ∂Ω

∇⋅ Ω = ⋅ Γ∫ ∫
� �

�

 (2.9) 11 

where n
�

 is the boundary normal, and ∂Ω  is the boundary 12 

of Ω . We now seek F
�

 such that F∇⋅
�

 is exactly equal to 13 

the integrand in Equation (2.8). Various possibilities exist; 14 
for example: 15 

 
3

, ,
ˆ( ) ( )

3
i xx j xx

Ez
F H x H x k=
�

 (2.10) 16 

Thus: 17 

 
3

, ,( ) ( )
3

i xx j xx

Ez
F H x H x

z

 ∂  ∇ ⋅ =  ∂  

�

 (2.11) 18 

i.e., 19 

 2
, ,( ) ( )i xx j xxF Ez H x H x∇⋅ =

�

 (2.12) 20 

From Equations (2.9) and (2.10): 21 

 
3

, ,( ) ( )
3

i xx j xx z

Ez
Fd H x H x n d

Ω ∂Ω

∇⋅ Ω = Γ∫ ∫
�

 (2.13) 22 

Thus: 23 

 

3

, ,( ) ( )
3

ij i xx j xx z

Ez
K H x H x n d

∂Ω

= Γ∫  (2.14) 24 

where zn  is z-component of boundary normal. Thus, one 25 

can compute the stiffness matrix via Equation (2.14) 26 
through simple boundary integration. Note that portion of 27 
the boundary where 0zn ≠  needs to be considered. 28 

 On the other hand, suppose: 29 

 2 ˆ( )ijF Ez G x i=
�

 (2.15) 30 

where ( )ijG x  is defined via the indefinite integral: 31 

 

, ,( ) ( )ij i xx j xxG H x H x dx

∂Ω

= ∫  (2.16) 32 

then it is easy to show that: 33 

 

2 ( )ij ij xK Ez G x n d

∂Ω

= Γ∫  (2.17) 34 

Observe that ( )ijG x  in Equation (2.16) is computed once, 35 

and is independent of the beam geometry. Now only 36 
portion of the boundary where 0xn ≠  needs to be 37 

considered. 38 

 From the derivation it is easy to show that Equations 39 
(2.7), (2.14) and (2.17) are equivalent. In other words, 40 

boundary integration results in exactly the same stiffness 41 
matrix as in classic 1-D beam analysis. The 42 
implementation details are considered later on. 43 

3.3 Asymmetric Beams  44 

 For asymmetric beams such as the one in Figure 4, the 45 
kinematics needs to be generalized from Equation (2.1) to: 46 

 
0 0,

0

( , , ) ( )

( , , ) ( )

xu x y z u x zw

w x y z w x

≈ −

≈
 (2.18) 47 

where 0 0( )& ( )u x w x  are the axial and bending 48 

displacements. The unknown displacements 0( )u x  and 49 

0( )w x  are typically approximated via: 50 

 
0 0

0 0

ˆ( )

ˆ( )

u

w

u x N d

w x N d

=

=
 (2.19) 51 

where: 52 

 
{ }
{ }
1 2 3

1 2 3 4

( ) 0 0 ( ) ( ) 0 0

0 ( ) ( ) 0 0 ( ) ( )

u

w

N Q x Q x Q x

N H x H x H x H x

=

=
 (2.20) 53 

where iQ  are quadratic shape function, and 0d̂  are the 7 54 

degrees of freedom include 3 for axial stretching, and 4 for 55 
bending: 56 

 { }0 1 1 1 2 3 2 2
ˆ ˆ ˆˆ ˆˆ ˆ ˆd u w u u wθ θ=  (2.21) 57 

 Observe that the beam stress is given by: 58 

 ( )0, 0,xx x xxE u zwσ = −  (2.22) 59 

Further, it is easy to show that the stiffness matrix is given 60 
by: 61 

 ( )( ), , , ,
u w u w

ij i x i xx j x j xxK E N zN N zN d

Ω

 = − − Ω  ∫  (2.23) 62 

i.e., 63 

 
( ), , , , , ,

2
, ,

u u w u u w

i x j x i xx j x i x j xx

ij w w

i xx j xx

N N z N N N N
K E d

z N NΩ

 − + = Ω 
 +
 

∫  (2.24) 64 

Reducing the integration to the boundary results in: 65 

 ( )

, ,

2

, , , ,

3

, ,

2

3

u u

i x j x

w u u w

ij i xx j x i x j xx z

w w

i xx j xx

zN N

z
K E N N N N n d

z
N N

∂Ω

 
 
 
 
 

= − + Γ 
 
 
 
+ 
  

∫  (2.25) 66 

Again, only the portion of the boundary where 0zn ≠  67 

needs to be considered; these are identified in Figure 5.  68 

 69 
Figure 5: Faces with 0zn ≠  highlighted. 70 
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If the equivalent of Equation (2.17) is adopted, then the 1 
boundary faces identified in Figure 6 where 0xn ≠  are 2 

used. For simplicity, we shall adopt Equation (2.25) for the 3 
rest of the paper. 4 

 5 
Figure 6: Faces with 0xn ≠ highlighted. 6 

3.2 Boundary Integration Techniques 7 

 Almost all CAD systems today can generate a surface 8 
triangulation of a solid model rapidly. This is ideal for 9 
computing the stiffness matrix since the quality of the 10 
triangulation is not relevant for the boundary integration. 11 
In particular, given a triangulation of ∂Ω ,  Equations 12 
(2.14) reduces to the form: 13 

 

, ,

...
k k

u u

i x j x

ij z

T T

zN N
K n d

⊂∂Ω

 
 = Γ 
  

∑ ∫  (2.26) 14 

Now, to evaluate the integral over each triangle, one can 15 
exploit the algorithms described in [17] or perform 16 
Gaussian integration. Only the triangles highlighted in 17 
Figure 7 need to be considered. 18 

 19 
Figure 7: Triangles with 0zn ≠ . 20 

 Thus far, it was assumed that a single beam-element is 21 
used to model the entire 3-D beam structure. 22 
Consequently, further division of the triangles was not 23 
necessary.  24 

 Typically, multiple beam-elements are necessary to 25 
capture the physics; for example, Figure 8 illustrates the 26 
use 2 beam-elements to capture the sudden change in 27 
cross-section. (In reality, the virtual 1-D beam 28 
discretization is automated, and happens 'behind-the-29 
scene'). 30 

 31 
Figure 8: Modeling via 2 beam-elements 32 

This implies that, given a triangulation of the beam, one 33 
must split it at the juncture. This is fairly straight-forward 34 
to implement as illustrated in Figure 9. In Figure 9a, we 35 
start with an initial triangulation consisting of 3 triangles. 36 
Now, suppose we wish to integrate over a portion as 37 

illustrated in Figure 9b, then, the triangles are split as 38 
shown in Figure 9c, and the integration is carried out. 39 

 40 

Figure 9: (a) Triangulation, (b) desired integration over 41 
sub-region, (c) triangulation of the sub-region. 42 

 For the 2 beam-element illustrated in Figure 9a, the 43 
resulting triangulation is illustrated in Figure 10 44 

  45 
Figure 10: Splitting of a triangulation for 2 beam-elements. 46 

3.4 Traction Forces for Asymmetric Beams  47 

 The force contributions are also fairly straightforward to 48 
compute. For example, consider the tractions in Figure 4; 49 
we shall assume that these tractions are prescribed as 50 

( , )xt x z  and ( , )zt x z components over the boundary. The 51 

virtual work is therefore given by: 52 

 [ ]
N

x zW ut wt dδ δ δ

Γ

= + Γ∫  (2.27) 53 

Exploiting the definitions in Equation (2.18) and the shape 54 
functions in Equation (2.19), the force contributions are: 55 

 ( ),
N

u w w

x x zf N zN t N t d

Γ

 = − + Γ  ∫  (2.28) 56 

Finally, one can evaluate Equation (2.28) on a surface 57 
triangulation via the algorithms described in [17]. Thus, 58 
the various 1-D beam loads and moments are determined 59 
in a systematic fashion.  60 

3.5 Mass Matrix for Asymmetric Beams  61 

 The mass matrix derivation follows a similar process. 62 
For example, if one considers an asymmetric beam via the 63 
Euler-Bernoulli formulation, the mass matrix components 64 
are given by [12]: 65 

 ( )( ), ,
u w u w w w

ij i i x j j x i jM N zN N zN N N dρ

Ω

 = − − + Ω  ∫  (2.29) 66 

i.e., 67 
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 ( )
( )
, ,

2
, ,

u u w w

i j i j

w u u w

ij i x j i j x

w w

i x j x

N N N N

M z N N N N d

z N N

ρ

Ω

 + 
 
 = − + Ω 
 
 +
 

∫  (2.30) 1 

Applying the divergence theorem results in: 2 

 

( )

( )

( )

2

, ,

3

, ,

2

3

u u w w

i j i j

w u u w

ij i x j i j x z

w w

i x j x

z N N N N

z
M N N N N n d

z
N N

ρ

∂Ω

 
 + 
 
 

= − + Γ 
 
 
 
+ 
  

∫  (2.31) 3 

The above boundary integration is then evaluated over the 4 
triangulation as described earlier. 5 

3.6 Timoshenko Beams  6 

 For shear-deformable beam theories such as 7 
Timoshenko beam theory, instead of Equation (2.18), we 8 
have: 9 

 
0 0

0

( , ) ( ) ( )

( , ) ( )

u x z u x z x

w x z w x

θ≈ +

≈
 (2.32) 10 

Further, to avoid locking, one can use, for example, the 11 
shape functions associated with the T2CL6 element 12 
described in [18], instead of the shape functions in 13 
Equation (2.20). Besides these two changes, the rest of 14 
derivation is identical to Euler-Bernoulli formulation.  As 15 
an illustration, please see Appendix A for a derivation of 16 
the stiffness matrix.  17 

4. Numerical Experiments 18 

 We present here results from a variety of numerical 19 
experiments. In all experiments, we assume the following 20 
unless otherwise specified: 21 

 

11 2

3

2 /

0.33

8000 /

E e N m

kg m

υ

ρ

=

=

=

 (2.33) 22 

We compare our results against analytical results if 23 
available; else, we use a very high quality 3-D finite 24 
element analysis for comparison. Section 4.1 focuses on 25 
static problems, while Section 4.2 focuses on modal 26 
problems.  27 

4.1 Static Problems  28 

4.1.1 Rectangular Cross-Section Beam  29 

 The first verification experiment is the static analysis of 30 
a thin rectangular cross-section beam, of length L=1m 31 
(along x), width (along y) of 0.1m, and height (along z) as 32 
specified in Table 1. The beam is fixed at x=0, and is 33 
subject to a z-tip force of  1 N at x = L. The numerical 34 
results are presented below in Table 1. Observe that there 35 
is no locking in that there is no loss in accuracy as the 36 
aspect ratio increases. 37 

Table 1: Static deflection of a rectangular cross-section 38 
beam. 39 

 Analytical 
Results 

Dual-Rep  

Euler-Bernoulli 

3

3

PL

EI
 

(7 dof) 

h = 0.05m 86.0e−  86.0e−  

h = 0.01m 67.5e−  67.5e−  

h = 0.001m 0.0075 0.0075 

4.1.2 Slotted I-Beam 40 

 The real advantage of the proposed method is in 41 
modeling non-uniform cross-section, beams. For example, 42 
consider the I-beam in Figure 11 that has a pair of slots as 43 
illustrated. The total length of the I-beam is 5m; the slots 44 
are centered on the I-beam, and have a total length of 1 m, 45 
a width of 50 mm (marked 'd'), and are at a distance of 10 46 
mm from the sides, as illustrated. 47 

 48 

 49 

Figure 11: An I-beam with slotted feature. 50 

 The objective is to compute the maximum deflection of 51 
the I-beam, as the slot-width, denoted by ‘d’, is varied.  In 52 
classic 1-D analysis, one must explicitly compute cross-53 
sectional properties across the slotted section, and import 54 
that into the 1-D model. Here, we extract the triangulation 55 
of the 3-D CAD model, and compute the stiffness matrix 56 
via the Timoshenko beam-model with 10 beam elements 57 
(63 dof).  We use the commercially available 58 
COSMOSWorks FEA [19] (with about 133,000 dof) for 59 
comparison. The numerical results are tabulated in Table 60 
2; typical CPU time taken is also tabulated. 61 

Table 2: Static deflection of a slotted I-beam (meters). 62 
 3-D FEA 

(~133,000 dof) 
Dual-Rep 

Timoshenko 

(63 dof)) 

20d mm=  81.324e−  81.322e−  

50d mm=  81.400e−  81.391e−  

70d mm=  81.491e−  81.476e−  

CPU time  83 seconds 0.7 seconds 

Observe that, the predicted deflection is within 1% of the 63 
3-D solution, while the computational cost is 2 orders of 64 
magnitude smaller. 65 
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 Since the analysis is carried out using a 3-D CAD model, 1 
one can, for example, compute and display the 3-D 2 
displacements via Equation (2.18). However, while a 3 
coarse triangulation is sufficient for accurate prediction of 4 
deflections and stresses, a finer triangulation is desirable 5 
(purely) for visualization. Figure 12 illustrates the 6 
deformation of the 3-D beam, as predicted via the 7 
proposed method. 8 

 Further, one can extract the beam stresses via Equation 9 
(2.22); this is illustrated in Figure 12. As can be observed 10 
in Figure 12, the proposed method accounts for the 11 
reduced cross-section near the slot (the stresses are 12 
accurate to within 3% of the 3-D nominal stress). One 13 
cannot however capture the 3-D stress concentrations via 14 
beam physics; this entails sub-modeling [20], and is not 15 
pursued in this paper. 16 

 17 

 18 

Figure 12: Beam stress | |xxσ  over slotted I-beam. 19 

4.1.3 A Stiffened Structure 20 

 Consider next the static deflection of a beam-like 21 
structure illustrated in Figure 13. Such structures are 22 
analyzed today by decomposing them into numerous beam 23 
elements, and computing the cross-sectional properties of 24 
each beam. However, in the proposed method, one can use 25 
a single (virtual) beam as illustrated, and use boundary 26 
integration to carry out an equivalent beam-analysis.   27 

 Indeed, a 3-D FEA (with 80,000 dof) predicts a 28 
deflection of 0.221 mm, while the proposed method (with 29 
50 dof) predicts a deflection of 0.215 mm. Thus, with 30 
judicious approximation, one can attain considerable 31 
computational speed-ups, with minimal loss in accuracy. 32 

 33 

Figure 13: A beam-like structure, and 1-D beam. 34 

4.2 Modal Problems 35 

4.2.1 Rectangular Cross-Section Beam  36 

 Next, we consider modal problems. The first verification 37 
experiment for modal problems is on a rectangular cross-38 
section beam, of length L = 1m (along x), width (along y) of 39 
0.1m, and height (along z) of 0.01m, that is cantilevered at 40 
one end. The first few modal values (in Hz) are presented 41 
in Table 1 using 20 Euler-Bernoulli elements within the 42 
dual-representation framework. Observe that the results 43 
closely match the analytical results for an Euler-Bernoulli 44 
beam [21]. 45 

Table 3: Modes of a rectangular cross-section beam. 46 
 Analytica

l Results 

 

Dual-Rep  

Euler-
Bernoulli 

(83 dof) 

3-D FEA 
(20,000 

dof) 

Mode-1 40.384 40.385 40.552 

Mode-2 253.09 253.09 251.19 

Mode-3 708.70 708.68 691.06 

Mode-4 1388.80 1388.77 1321.76 

4.2.2 Filleted Beam  47 

 We now study the impact of a fillet on the modes of the 48 
above beam; the beam dimensions are identical to the 49 
previous example, except that the beam is filleted at the 50 
cantilevered end. The radius of the fillet is modified in the 51 
experiment below. In current methods of beam analysis, it 52 
is difficult to account for the fillet; specialized methods are 53 
necessary [14]. In the proposed method, the fillets pose no 54 
additional challenge. 55 

 56 

Figure 14: A filleted beam. 57 

The predicted percentage increase in frequencies in the 58 
first few modes are presented in the table below for two 59 
different radii. As one observe, the proposed method 60 
closely matches the 3-D FEA results, at a considerably 61 
reduced computational cost.  62 

Table 4: Predicted increase in frequency due to fillets. 63 
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  ∆f 

Dual-Rep  

(EB; 123 
dof) 

∆f 

3-D FEA 
(25,000 
dof) 

 

 

R = 25 
mm 

Mode-1 +2.0%     +1.7%     

Mode-2 +2.1%    +1.7%    

Mode-3 +2.1%    +1.7%    

Mode-4 +2.0% +1.6% 

 

 

R = 50 
mm 

Mode-1 +6.7%    +5.9%    

Mode-2 +6.5%    +5.7%    

Mode-3 +6.4%    +5.5%    

Mode-4 +6.3% +5.3% 

4.2.3 AFM Microcantilever  1 

 As a final example, we consider atomic force microscopy 2 
(AFM) microcantilevers illustrated in Figure 15 [22]. These 3 
cantilevers are beam-like structures with special tips as 4 
illustrated. The fundamental frequencies of these AFM tips 5 
are critical in many AFM applications [22]. The AFM tip 6 
illustrated in Figure 15 has a length of 100 microns, width 7 
of 10 microns, and height of 1 micron. The material is 8 

silicon (E = 1.124e11, v = 0.28, ρ = 2330; SI units). The tip 9 
has a total height of 25 microns. 10 

 In classic beam analysis, the tip mass must be estimated 11 
and ‘inserted’ as a parameter into a 1-D beam model[23]. 12 
In the proposed method, the mass contribution is 13 
computed in an automated fashion. 14 

  15 

Figure 15: A micro-cantilever 16 

The table below compares the frequencies predicted (in 17 
MHz) by the proposed method and 3-D FEA. 18 

Table 5: Modal frequencies (MHz) of a AFM 19 
microcantilever. 20 

Frequency 

In 

MHz 

Dual-Rep  

Euler-Bernoulli 

(83 dof) 

3-D FEA 
(14,000 dof) 

Mode-1 0.69111 0.69516 

Mode-2 4.3839 4.4014 

Mode-3 12.387 12.420 

Mode-4 24.489 24.455 

5. Conclusions 21 

 The main contribution of this paper is a CAD-integrated 22 
method for computing the static and modal response of 23 
geometrically complex 3-D beam-like structures. For 24 
uniform cross-section beams, the proposed method is 25 
equivalent to classic 1-D beam theory. For more complex 26 
beams, the results closely match 3-D FEA results, with far 27 
fewer degrees of freedom.  28 

 Future work will focus on: (1) coupling of 3-D finite 29 
element analysis (over non-slender regions of complex 30 
geometries) with implicit 1-D beam analysis (over slender 31 
regions), and (2) computing, in a posteriori sense, the 32 
modeling error due to possibly incorrect 1-D beam 33 
assumptions.  34 

Appendix A: Boundary Integration for the 35 
Timoshenko Beam 36 

In Timoshenko beam theory, the displacements are 37 
approximated via Equation (2.32), where 0( )u x , 0( )w x  38 

and 0( )xθ  are the axial, bending and rotation of a 39 

transverse normal about the y-axis. To avoid locking, we 40 
use the shape functions associated with the T2CL6 41 
Timoshenko beam element described in [18]. This beam 42 
element (see Figure 16) has a total of 10 degrees of 43 
freedom with one degree of freedom wα  that is eliminated. 44 

 45 
Figure 16: The T2CL6 beam element. 46 

The unknown functions 0( )u x , 0( )w x , and 0( )xθ are 47 

approximated in this beam element via: 48 

 

0 0

0 0

0 0

ˆ( )

ˆ( )

ˆ( )

u

w

u x N d

w x N d

x N dθθ

=

=

=

 49 

where: 50 

 

2

2

2

2

2

2

0( )/2

00

0 ( )/2

0( 1)/2

00 ;

0 ( 1)/2

0( )/2

00

0 ( )/2

T

uN N θ

ξ ξ

ξ ξ

ξ

ξ

ξ ξ

ξ ξ

      −                        −            − +            = =          − +        +                 +      

;

T



 51 

are the usual quadratic shape-functions while the shape 52 
function for the 0( )w x : 53 
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2

3

2

3

2

3

0

( )/2

( )/12

0

( 1)/2

( )/6

0

( )/2

( )/12

T

w

L

N

L

L

ξ ξ

ξ ξ

ξ

ξ ξ

ξ ξ

ξ ξ

      −    −         − +=     − +        +     −   

 1 

is obtained by applying the constraint discussed in [18] to 2 

avoid locking. Notice that 0( )w x  is approximated via a 3 

polynomial that is one order higher than 0( )xθ .  4 

 Further, the beam stresses are given by: 5 

 
( )
( )
0, 0,

0 0,

xx x x

xz xkG

E u z

w

σ θ

σ θ

= +

= +
 6 

where k  and G  are the shear correction factor and shear 7 
modulus respectively. Accounting for the axial and shear 8 
strain energies, it is easy to show that the stiffness matrix 9 
is now given by: 10 

 
( )( )
( )( )
, , , ,

, ,

u u

i x i x j x j x

w w

i i x j j x

ij

E N zN N zN

kG N N N N
K d

θ θ

θ θ

Ω

 + + + 
 
 + +  

= Ω∫  11 

i.e., 12 

 

( ), , , , , ,

2
, ,

, , , ,

u u u u

i x j x i x j x i x j x

i x j x

w w w w

i j i j x i x j i x j x

ij

N N z N N N N
E
z N N d

kG N N N N N N N N

K

θ θ

θ θ

θ θ θ θ
Ω

   + +   +     + Ω       + + +    

= ∫  13 

Reducing the integration to the boundary results in the 14 
boundary form of the Timoshenko T2CL6 stiffness matrix: 15 

 

( )
2

, , , , , ,

3

, ,

,

, , ,

2

3

u u u u

i x j x i x j x i x j x

i x j x

w

i j i j x

w w w

i x j i x j x

zij

z
zN N N N N N

E
z
N N

zN N zN N
kG
zN N zN N

K n d

θ θ

θ θ

θ θ θ

θ

∂Ω

     + +      +      +        + +       +     

= Γ∫  16 
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