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ABSTRACT 

There is significant interest today in the finite element 

simulation of various Additive Manufacturing (AM) processes. 

AM simulation is time-dependent, inherently non-linear, and 

involves multiple physics. In addition, repeated meshing and 

insertion of new elements during material deposition can pose 

significant implementation challenges.  

Currently, AM simulation is handled either through a ‘quiet’ 

approach or an ‘inactive’ approach. In the quiet approach, all 

finite elements within the workspace are assembled into the 

global stiffness matrix, and the elements yet to be deposited are 

assigned ‘void’ material properties. In the inactive approach, 

only the elements that have been deposited are assembled into 

the global stiffness matrix. The advantages and disadvantages 

of the two methods are well documented. 

In this paper, we propose a voxel-based, assembly-free 

framework for AM simulation. This framework presents several 

advantages including. (1) The workspace is meshed only once 

at the start of the simulation, (2) addition and deletion of 

elements is trivial, (3) reduced memory requirement as the 

global stiffness matrix is never assembled and (4) the 

underlying linear systems of equations can be solved efficiently 

through assembly-free methods. We demonstrate the framework 

here by simulating transient non-linear thermal behaviour of a 

laser deposition process, with material deposition.  

INTRODUCTION 

Additive Manufacturing (AM), sometimes referred to as 3D-

printing, captures various manufacturing processes that 

fabricate components layer-by-layer, directly from a digital part 

description, such as a Stereolithography (STL) description [1].  

AM has received significant attention lately due to its inherent 

advantages [2] including: (1) ability to handle complex 

geometry, (2) direct prototyping with minimal setup time, (3) 

reduced need for skilled labor, and (4) reduced material 

wastage. For example, consider the part in Figure 1; while one 

can certainly make this part through conventional subtractive 

processes, it will lead to significant wastage. AM, on the other 

hand, will minimize wastage. 

 
Figure 1: ADDITIVE MANUFACTURING OF THIS 

ILLUSTRATIVE PART WILL LEAD TO MINIMAL 

WASTAGE. 

There are many types of AM processes [3], [4]–[7] based on the 

choice of stock material, and bonding method. The stock 

material can be in the form of powder bed, powder jet, wire 

feed, or material extrusion, while the material bonding can be 

carried out by applying a liquid bonding agent, direct 

solidification, or by the application of thermal energy in the 

form of lasers or electron beams.  

In this paper, we focus on the laser engineering net shaping 

(LENS) method which uses powder jet nozzles to feed the stock 

material, and lasers to induce melting and bonding. LENS was 

developed at the Sandia National Laboratories, and is currently 

commercialized through Optomec Design Company. The most 



 

commonly used materials in LENS include titanium alloys 

(Ti6Al4V), stainless steel alloys, aluminum, copper and nickel 

alloys. The laser used in the method is usually Nd-Yag [8].  

In the LENS process, one starts with a substrate. A high-

powered laser beam is then used to create a molten pool into 

which the metallic powder is simultaneously fed. The beam is 

moved along with the powder feed jet to trace out the first slice 

of the layer of the part, as shown in Figure 2. The process is 

repeated layer by layer, until the part is completed. 

 
Figure 2: A SCHEMATIC REPRESENTATION OF THE 

SUBSTRATE WITH THE FIRST LAYER OF METAL 

DEPOSITION. 

The transient thermal behavior of the above process largely 

determines the solidification rate, void formation and residual 

stresses, which in turn determine the final quality, 

microstructure and reliability of the manufactured part [9], [10].  

A good understanding of the thermal behavior and its 

dependency on the process parameters (feed-rate, laser energy, 

and thermal boundary conditions) are therefore of paramount 

importance [11]. The most common method for simulating such 

processes is transient finite element analysis. 

FINITE ELEMENT SIMULATION 

Mathematical Model 

The AM process can largely be modeled via the energy 

equation [1], [11]: 
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Where  
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From the energy equation, we extract just the transient thermal 

finite element governing equation, by ignoring (for the purpose 

of this paper) the phase change and the fluid flow [12], [13]. 

Now, the Equation (2.1) simplifies to:  
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Boundary conditions include a combination of Dirichlet (fixed 

temperature), heat source, convective, and radiative conditions. 

A detailed description can be found in [14]. Through the classic 

finite element based Galerkin formulation [15], the governing 

equation and boundary conditions can be collapsed into: 
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If the non-linear radiative boundary condition is expressed as: 

 4 4 2 2

0 0 0 0( ) ( )( )( )T T T T T T T T− = + + −     (2.5) 

Then, the finite element discretization, Equation (2.4), together 

with Equation (2.5), can be reduced to: 
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 [ ] [N]B = ∇  (2.10) 

The laser heat source, can be treated as a volumetric internal 

energy source Q in Equation (2.9) and is typically modeled 

using a double ellipsoidal model [9], [16] 
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: laser power(W)

: process efficiency

: scaling factor

: transverse depth(m)

: melt pool depth(m)

: longitudinal ellipsoid axis(m)

: time(s)

: heat source velocity(m/s)
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The advantage of using a double ellipsoidal is that the front 

gradient can be made steeper than the rear, replicating the laser. 

Time Stepping  

To solve Equation (2.6), we rely on the Newmark Beta method 

for time-stepping [17], where: 

 { }1 1{ } { } (1 )n n n nT T t T Tβ β+ += + ∆ − +� �   (2.13)  

By multiplying Equation (2.6) with (1-β) at time step ‘n’ and β 

at time step ‘n+1’, and then, adding the two will result in: 
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Here the heat capacity matrix [C] is independent of time and 

temperature. This can be expressed in the form: 
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Observe that the stiffness matrix is temperature dependent due 

to the radiative term, and dependency of the material properties 

on the temperature. Thus, at every time step one must solve a 

non-linear set of equations. Here we use β = 1 to ensure 

unconditional stability. In other words: 
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Inherent Challenges 

In the LENS process, the temperature changes are large and 

very rapid (for example, the temperature can increase from 20°C 

to 1670°C in milliseconds [14]) with large temperature 

gradients. This entails small time steps, and a fine resolution of 

the geometry. Adaptive mesh techniques are often used [16], 

with fine discretization near the heat source and on the top few 

layers. However, as the laser traverses, and as the material is 

added to the top layer, constant re-meshing is required. 

Finally, to account for material deposition, two methods, 

namely, quiet-element and inactive-element methods are 

currently used [16]. 

In the quiet approach, all finite elements within the workspace 

are assembled into the global stiffness matrix, but the elements 

yet to be deposited are assigned ‘void’ material properties. They 

are later assigned appropriate material properties, as and when 

needed. The method uses a constant mesh, and is simple to 

implement, but the incorrect selection of scaling factors can 

lead to ill-conditioning of the Jacobian. 

The inactive method uses an evolving mesh, and includes only 

the active elements for simulation. This leads to high simulation 

speeds, especially during the initial stages. However, constant 

re-meshing and re-formulation of the finite element equation 

can be time consuming and difficult to implement. A hybrid 

technique has been used in [16].  

To overcome these challenges, we propose a voxel-based, 

assembly-free method which does not require the matrices to be 

assembled. This method can be used to deal with the various 

nonlinearities of the system. This method can also effectively 

model the material deposition and has several advantages over 

the quiet and inactive methods. 

PROPOSED METHOD 

Voxelization  

Voxelization is a special form of finite element discretization 

where all elements are identical (hexahedral elements). For 

example, Figure 3 illustrates the voxel mesh of the geometry in 

Figure 2. The most important advantage of voxelization is its 

robustness; voxelization rarely fails unlike classic meshing. In 

addition, voxelization significantly reduces memory foot-print 

since the element stiffness matrices are all identical; this 

directly translates into increased speed of analysis.  

 
Figure 3: UNIFORM VOXELIZATION OF GEOMETRY 

FROM Figure 2. 

Voxels have been used in additive manufacturing, for example, 

to find effective mechanical properties [18]. In this paper, 

voxels are used as a computational unit. In the present 

approach, the entire workspace is discretized once, at the 

beginning of the simulation (see Figure 4). As with the inactive 

element method, the elements to be deposited are inactive. 

However, unlike the inactive approach, the global stiffness 



 

matrix is never assembled. The challenges associated with 

‘void’ material assignment are overcome through assembly-free 

analysis. 

 

Figure 4: ELEMENTS TO BE DEPOSITED ARE INACTIVE. 

Assembly Free Analysis 

Assembly-free finite element analysis was proposed by Hughes 

and others in 1983 [19]. In recent years, it has resurfaced due to 

the surge in fine-grain parallelization. The basic concept used in 

the analysis is that the stiffness matrix is never assembled; 

instead, matrix operations are performed in an assembly-free 

elemental level [20], [21]. For example, the typical Sparse 

Matrix Vector Multiplication (SpMV) is typically implemented 

by first assembling the element stiffness matrices as follows: 
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In an assembly free method, this is implemented by first 

carrying out the multiplications at the element level, and then 

assembling the results: 
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e

Kx K x= ∑  (3.2) 

Assembly free analysis is not advantageous when elements are 

distinct from each other (as in a classic finite element mesh). 

However, with voxelization, since all elements are identical, 

only one elemental 8*8 stiffness matrix needs to be stored, and 

Equation (3.2) can be executed rapidly, with reduced memory 

footprint. 

In AM simulation, as elements are deposited, introducing them 

into the computation is also trivial. An additional element (with 

identical stiffness matrix) needs to be inserted while evaluating 

Equation (3.2). Similarly, the boundary conditions can be 

updated. 

The SpMV in Equation (3.2) serves as the backbone of the 

classic Conjugate Gradient (CG) solver [20], [21]. For the 

thermal problem, preconditioners are not needed since the 

stiffness matrix is typically well conditioned. 

In the current context of SpMV, the matrix is the effective 

stiffness matrix given by Equation (2.18). It consists of the C 

matrix and the stiffness matrix term K given by Equation (2.8). 

The C matrix can easily be treated in an assembly-free manner 

using a single copy of an element damping matrix. The K 

matrix can be broken up into the following 3 matrices: 
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The first term can be treated in an assembly-free manner using a 

single copy of an element stiffness matrix. However, for the 

convection and radiation matrices in Equation (3.3), since the 

integral is over the boundary, up to six different element 

stiffness matrices may have to be stored (to account for six 

different faces of a voxel). To accelerate computations, these 

two matrices are diagonalized here; this is analogous to the 

diagonalization (lumping) of the mass matrices [17]. The 

effective force vector given by Equation (2.19) is easy to 

evaluate in an assembly free manner. 

Now consider the solution of the linear equation in Equation 

(2.15). This equation must be solved at each time-step. Since 

this is a non-linear equation, we rely on the iterative Newton 

Raphson method [22]. The 0

1n
T + is obtained from the CG solver, 

and this is used to calculate the 0

effF . The residual for the 

Newton Raphson process is then defined as: 
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n
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The superscripts denote the iteration number of the Newton 

Raphson process. The subscripts denotes the current time step 

for which the temperature is required. One can now show that 

the tangent matrix used in the Newton Raphson process is given 

by: 
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Using the methodology described above, the Jacobian can be 

computed in an assembly free mmaner, followed by an 

assembly free update the temperature: 
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VERIFICATION STUDIES 

The assembly-free, voxel-based method was tested and verified 

for a few steady state and transient thermal examples as 

follows. All FEA simulations were performed with an Intel(R) 

Core™ i5-3570 CPU processor with 8.00 GB RAM and a 

Windows 7 Operating System.  

The results and speeds were then compared with ANSYS and 

SolidWorks on the same machine, with the same convergence 

criteria. All ANSYS and SolidWorks models were pre-meshed 

and only the time taken to solve the FEA problem was 

compared. Conjugate gradient iterative solvers were used in the 

present study. The CPU time taken for solving is obtained from 



 

the Ansys and SolidWorks report, and is compared with the 

Voxel Based method.  

Block Geometry: Effect of Diagonalization  

The block in Figure 5 is of dimension 6m X 3m X 11m, and is 

made of Titanium with conductivity K=19.9W/mK, and 

boundary conditions as shown: fixed temperature on one-side, 

heat flux on the other, while all other faces are subject to 

surface losses through convection and radiation with h = 

30W/m2K and emissivity of ε = 0.6; the ambient temperature 

being T0= 293K.  

 

Figure 5: SIMPLE BLOCK PROBLEM. 

Since the geometry is a simple block, there is no error due to 

voxelization. For about 2000 elements, ANSYS predicts a 

minimum temperature of 292.18K and a maximum temperature 

of 500K, SolidWorks predicts 292.13 and 500, and the proposed 

method predicts 292.16 and 500. A variety of such problems 

were solved and results compared. The proposed method 

yielded results within 0.02% of commercial implementations, 

suggesting that the error due to diagonalization is not 

significant, and may be negligible compared to unavoidable 

finite element discretization errors. 

Curved Geometry: Effect of Voxel Mesh 

Next, we will consider errors due to voxelization, using the part 

illustrated in Figure 6 that exhibit curved surfaces. The material 

is Alloy Steel with conductivity K=50W/mK; the boundary 

conditions are as illustrated: fixed temp of 300K on the left 

face, a convection boundary condition(C) with h = 100W/m2K 

and a medium temperature of 423K on the inner cylindrical 

surface, and a radiation boundary condition, with ε = 0.4 and 

ambient temperature of 273K everywhere else. 

 
Figure 6: CURVED SURFACE GEOMETRY. 

The part was discretized using 38000 voxel elements in our 

method, while a conforming tetrahedral mesh with the same 

number of elements was used both in ANSYS and SolidWorks. 

The temperature predictions from our method were within 

0.14% of commercial implementations; the temperature 

distributions are illustrated in Figure 7. 

  

Figure 7: THERMAL DISTRIBUTION USING: (A) 

PROPOSED METHOD AND (b) ANSYS. 

Further, Figure 8 illustrates the percentage deviation as a 

function of the number of elements. This is the typical deviation 

we have observed for curved geometry. 

 

Figure 8: PERCENT DEVIATION VS NUMBER OF 

ELEMENTS. 

For the above problem, Figure 9 illustrates the computing times 

as a function of the number of elements.  

 

Figure 9: COMPUTING TIME VS NUMBER OF 

ELEMENTS. 

Radiative Fin: Complex Geometry 

An implicit advantage of voxelization is that complex geometry 

can be handled with ease. Figure 10 illustrates a radiative fin 

made of Copper, with K = 390W/mK, that is 7m long with an 

elliptical cross section and circular fins. Steam at 373K flows 



 

inside (h = 10000W/m2K), with heat dissipated from the fins (h 

= 35 W/m2K, T0 = 298K, emissivity = 0.03).  

For a mesh with 80000 elements, the predicted temperature 

using our method was 362.44K (min) and 372.77K (max); see 

Figure 10b. These results deviated from commercial 

implementations by 0.02%. The solution time using our method 

was 6.5s, compared to 16s with ANSYS and 45s with 

SolidWorks. 

 

 

Figure 10: RADIATIVE FIN PROBLEM: (A) GEOMETRY, 

AND (B) TEMPERATURE DISTRIBUTION. 

Transient Analysis  

In this experiment, we will carry out a transient analysis on the 

geometry used in Section 4.2. The boundary conditions are as 

before, with the initial temperature of the body set to 298K. A 

mesh of 38,000 elements was used as before. The transient 

maximum temperature plots are illustrated in Figure 11.  

 

(a) PROPOSED VOXEL BASED METHOD. 

 

(b) ANSYS. 

Figure 11: VARIATION OF TEMPERATURE OVER TIME. 

The deviation of the proposed method from ANSYS was less 

than 0.133 percent, while the time taken by the proposed 

method was 585s compared to 3092s by ANSYS.  

CASE STUDY 

In this section, we will simulate the AM process of the part 

shown illustrated in Figure 12. The heat source follows the path 

of the part on the solid substrate. The element activation occurs 

when 5% of the maximum value of the heat flux is felt at a 

particular element at any time step.  

 

Figure 12: CASE STUDY : PART WITH THE SUBSTRATE. 

The part with substrate was meshed with 25000 elements, and, 

at the beginning of the AM simulation, the elements above the 

substrate were turned ‘off’. The bottom surface of the substrate 

was fixed at 298K, and top surface of the substrate and all 

surfaces of the final part are subject to both convection and 

radiation with heat transfer coefficient h = 35 W/m2K, 

emissivity = 0.6, with ambient medium temperature at 298K.  

The path is divided into 97 steps, and the coordinates are stored 

in a file. The laser is assumed to move at 0.1s per time step, 

corresponding to a laser speed of 5 mm/s. The volumetric heat 

flux given by Equation (2.11) is applied based on the location 

on the substrate at each time step. The temperature distribution 

at three different instances is illustrated in Figure 13. The entire 

transient thermal simulation of one layer of material was 

completed in 129 seconds. 



 

 

Figure 13: TEMPERATURE DISTRIBUTION at 0.8 S, 2.7 S, 

4.8 S. 

The finite element mesh after one layer of material deposition is 

illustrated in Figure 14. The cycle can be repeated for each 

layer, with no degradation in performance. 

 

 Figure 14: THE FIRST LAYER OF MATERIAL. 

CONCLUSION 

As a first step towards a fast simulation framework for additive 

manufacturing, this paper demonstrates an assembly-free 

transient thermal analysis with material deposition. As the 

experiments demonstrate, the method is sufficiently accurate (to 

within 0.15% of commercial implementations), but significantly 

faster (with a speed-up ranging from 2 to 50). Future work will 

focus on including phase change and fluid flow. 
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