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Abstract: 

We extend the concept of generalized NURBS (GNURBS), recently introduced by the authors for 

parametric curves, to bivariate parametric surfaces. These generalizations are obtained via either 

explicit or implicit decoupling of the weights along different physical coordinates. This decoupling 

allows for treating the weights as additional degrees of freedom in a wider range of applications 

compared to classic NURBS surfaces, providing additional flexibility and increased control. This 

proposed concept effectively improves the capability of NURBS and alleviates its deficiencies in 

certain applications. In particular, we will demonstrate that GNURBS can be effectively used for 

improved approximation of certain class of surfaces such as helicoids, revolved surfaces and 

minimal surfaces. It will also be established that these proposed generalizations can be exactly 

transformed to equivalent, but higher order, classic NURBS surfaces, ensuring a strong theoretical 

foundation. Finally, a comprehensive MATLAB toolbox, GNURBS3D-Lab, has been developed 

and introduced in order to better demonstrate the behavior and properties of GNURBS surfaces 

compared to classic NURBS.  
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1. Introduction 

Non-Uniform Rational B-Splines (NURBS) were first introduced in 1975 by Versprille [1] via 

rational extension of B-splines. The primary motivation for introducing NURBS was to represent 

conical shapes precisely. This is the critical advantage of NURBS over other polynomial-based 

classes of splines, and one of the main reasons for its prevalence. Due to this crucial ability, 

NURBS are still the prevalent technology for curve and surface modelling in Computer-Aided 

Design/Computer-Aided Manufacturing (CAD/CAM), and an integral part of most existing 

CAD/CAM commercial software.  

The applications of this rational form, however, is not limited to precise representation of conics. 

Other applications of NURBS can also be found in CAD where the weights have been employed 

as additional degrees of freedom for improved flexibility. A thorough review of these applications 

has been reported by the authors in [2]. Moreover, in addition to CAD/CAM, NURBS have also 

been extensively used in many other areas of applications such as isogeometric analysis (IGA) [3], 

NURBS-augmented finite element analysis [4], shape optimization [5, 6], topology optimization 

[7, 8], material modeling [9, 10], reverse engineering [11], G-code generation [12] etc. 

Despite being a powerful tool in engineering design, NURBS have multiple shortcomings which 

restricts its capability in certain applications [13]. A thorough review of the advantages and 

limitations of NURBS is provided in [13]. A major shortcoming of NURBS which has received 

significant attention is their inability to allow for local refinement. Due to the rigid tensor-product 

structure of NURBS, knot-insertion is a global operation and cannot be performed locally. This 

was soon known as a fundamental limitation of NURBS, since local knot-insertion is critical in 

many applications and is considered a common and efficient way for achieving desirable accuracy 

in approximating sharp features [14] or scattered data of highly varying density [15]. For instance, 

Leal et al. [14] mention that “Despite the advantages of fitting with NURBS, it is still necessary to 

improve the representation of sharp features like high curvatures, edges and corners with this 

fitting method.” 

In order to remove this fundamental limitation, various generalizations of NURBS have been 

proposed so far. The concept of hierarchical B-spline constructions which considers multilevel B-

spline extensions where the tensor-product structure is preserved at any level was originally 

proposed by Forsey and Bartels in 1988 [16]. The application of hierarchical splines for adaptive 



scattered data fitting has recently been investigated by Bracco et al. [15]. To efficiently deal with 

non-trivial data configurations, they describe the local solutions in terms of (variable-degree) 

polynomial approximations according not only to the number of data points locally available, but 

also to the smallest singular value of the local collocation matrices. These local approximations 

are subsequently combined without the need of additional computations with the construction of 

hierarchical quasi-interpolants described in terms of truncated hierarchical B-splines. 

Generalized Hierarchical NURBS (H-NURBS) were introduced in 2008 by Chen et al. [17] by 

extending the idea of hierarchical B-splines to NURBS. Another popular technology are T-splines 

[18, 19] which constitute a superset of NURBS, and provide the local refinement properties by 

allowing for unstructured-ness. Most recent class of splines which removes the limitations of T-

splines are Unstructured-splines (U-splines) that have been developed by Thomas [20].  

In addition to the above technologies, an alternative strategy for addressing the same issue has also 

been adopted by some researchers. The basic idea of these studies is to preserve the tensor-product 

structure of NURBS, and instead include the weighs of control points as additional degrees of 

freedom. This idea has also shown promising results for the approximation of scattered data of 

highly varying local density [21] as well as for the representation of sharp geometric features [14]. 

For instance, Leal et al. [14] present a new method for improving NURBS surface sharp feature 

representation that first subdivides the fitting data in clusters, by using SOM; then, in each cluster 

they use an evolutionary strategy to obtain the optimal weights of the NURBS such that the fitting 

error is minimized and the representation of sharp features is improved. While including the 

weights as additional degrees of freedom in data approximation with NURBS usually results in 

non-linear algorithms, Ma [11, 22] proposes a two-step linear algorithm which yields the optimal 

coordinates of control points as well as their optimal weights by solving two separate linear 

systems of equations.  

As discussed in [2], in spite of being an effective technique for improving the performance of 

NURBS, there is a wide range of applications where treating the weights as extra design variables 

is either impossible or can be problematic. For instance, Dimas and Briassoulis [13] point out that 

a bad choice of weights in approximation can lead to poor curve/surface parameterization. Piegl 

[23] states that “improper application of the weights can result in a very bad parameterization, 

which can destroy subsequent surface constructions”. Further, there are many applications where 



treating the weights as additional design variables is essentially impossible. These limitations 

inspired introducing the concept of Generalized NURBS (GNURBS) which is thoroughly 

discussed for parametric curves in [2] by the authors. Further, the extension of this mathematical 

model was introduced in [24] as a means for improved solution of boundary value problems using 

the isogeometric analysis method.  

The focus of this paper is to comprehensively study various types of GNURBS surfaces, provide 

mathematical proofs of their theoretical properties, and explore their applications in the context of 

CAGD. In particular, we will investigate a common application of these generalizations for 

improved surface approximation. It will be shown that, despite simply being disguised forms of 

classic NURBS, these generalizations provide significantly better approximation abilities 

compared to classic NURBS. 

The remainder of this paper is organized as follows: in Sections 2, 3 and 4 we introduce different 

generalizations of NURBS, and develop their theoretical properties. We explore the application of 

GNURBS for improved approximation of surfaces in Section 5 where least-square approximation 

algorithms are developed. A series of numerical examples are presented in Section 6 where the 

performance of GNURBS compared to NURBS for the approximation of different class of surfaces 

is studied. Further potential areas of applications and extensions of GNURBS are discussed in 

Section 7. An interactive MATLAB toolbox for GNURBS surfaces is introduced in Section 8, and 

finally conclusions are drawn in Section 9.  

2.  Generalized NURBS surfaces: non-isoparametric form via explicit decoupling of the 

weights 

We recall that the equation of a NURBS surface is defined in the following parametric form [23] 
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where ijw  are the weights associated with control points, and    ,
, ,, ( )p q

ij i p j qN N N     are 

bivariate B-spline basis functions. , ( )i pN   and  ,j qN   are the univariate B-spline basis functions 

of degree p and q defined on sets of non-decreasing real numbers 
10 1{ , , ..., }n p   Ξ  and 

20 1{ , , ..., }n q   Η , respectively, called knot vectors.  

According to Eq. (1), NURBS surfaces are isoparametric representations where all the physical 

coordinates are constructed by linear combination of the same set of scalar basis functions in 

parametric space. This is the case for all the other popular CAGD representations such as different 

types of splines; and ensures critical properties such as affine invariance and convex hull which 

are of interest in geometric modelling [2].  

We extend here the concept of Generalized Non-Uniform Rational B-Splines (GNURBS) [2] to 

surfaces by modifying Eq. (1) as follows 
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where   denotes Hadamard (entry-wise) product of two vector variables and 

       , [ , , , , , ]
ij ij ij

x y z T
ij R R R       R  is now a vector set of basis functions. Note that 

superscripts ,p q  have been omitted for brevity. Denoting an arbitrary coordinate in physical space 

by  , ,d x y z , the corresponding basis function in direction d can be written as  
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In the above equation,  , ,x y z
ij ij ijw w w  represent the set of coordinate-dependent weights associated 

with (i, j)th control point. Comparison of the above equation with that of classic NURBS in Eq. (1) 

shows that the main difference of the proposed generalized form is assigning independent weights 

to different physical coordinates of control points. As can be seen, the above leads to a non-

isoparametric representation. This representation demonstrates different geometric properties 

compared to NURBS which are discussed in detail in the following section. 

 



2.1. Theory and properties 

It can be shown that due to coordinate-dependence of basis functions, a GNURBS surface (in its 

original form) need not satisfy properties such as strong convex hull and affine invariance. We 

demonstrate here that most of the theoretical properties which were discussed for GNURBS curves 

in [2] can be extended for GNURBS surfaces.  

1. Local modification effect1 

Similar to NURBS, one can show that, in GNURBS, if a control point ijP is moved, or if any of 

the weights ( , )d
ijw d xy z  is changed, it affects the surface shape only over the rectangle 

1 1[ , ) [ , )i ji p j q       . However, unlike NURBS, changing the weights will only affect the 

parameterization of the surface along the corresponding physical coordinate d , while the surface 

parameterization in the other directions will be preserved. This is, in fact, the key difference 

between GNURBS and NURBS which provides additional flexibility. In particular, assuming 

1 1( , [ , ) [ , )i ji p j q          , if d
iw  is increased (decreased), the surface will move closer to 

(farther from) ijP . Further, for a fixed ( ,  , a point on ( , ) S moves along a straight line along 

d towards ijP  as a weight d
ijw  is modified. This can be directly concluded from Eq. (3) and the 

properties of classic NURBS. 

For better insight, we provide here a graphical representation of how this property differs in 

GNURBS compared to NURBS. For this purpose, we first generate a B-spline surface with linear 

in-plane parameterization using a net of 7 7 control points and quadratic basis functions in both 

parametric directions constructed over the knot vectors  0,0,0,0.2,0.4,0.6,0.8,1,1,1 Ξ Η . The 

employed net of control points is illustrated in Figure 1. As the figure shows, the heights of all 

control points are set to zero except for 44z  which is raised to 1.  

 
1 This property has already been studied in [24] 



 

Figure 1. Employed control net for construction of different NURBS surfaces. 

The B-spline surface obtained by using this control net is depicted in Figure 2.  

 

Figure 2. The B-spline surface in physical space. 

Next, we increase 44w to 4 and plot the resulting NURBS surface in the physical space in Figure 

3.  



 
Figure 3. The NURBS surface with w44 = 4 in physical space. 

Finally, using Eq. (3), we construct a GNURBS surface by only setting 44
zw to 4, and maintaining 

all other weights at 1. The resulting surface is shown in Figure 4.  

 
Figure 4. The GNURBS surface with wz

44 = 4 in physical space. 

Note that the depicted GNURBS surface in Figure 4 is obtained by using two different sets of basis 

functions. The in-plane coordinates are obtained using the B-spline basis functions, while the out 

of plane coordinate is constructed using rational basis functions.  



Comparing Figure 3 and Figure 4, one can clearly observe that modifying a weight in classic 

NURBS alters the parameterization of the surface in all physical directions, while in the case of 

GNURBS, the parameterization of the surface only changes in the direction of the varied 

directional weight (z-direction in Figure 4). It will be seen later that this property is critical for 

treating the weights as additional degrees of freedom in certain applications.  

2. Axis-aligned bounding box (AABB):  

Every GNURBS knot-element lies within the axis-aligned bounding box of its corresponding 

control points. That is, if     1 1, ,i i j j      
   , then ( , S  lies within the bounding box 

of the control points klP , i p k i    and j q l j   . 

Note that Eq. (3) can be easily written in the following form: 
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Accordingly, Eq. (5) could be written as 
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where  ,x  S ,  ,y  S  and  ,z  S  are simply classic NURBS surfaces. From a geometric 

standpoint, each of these surfaces is the projection of the original non-isoparametric surface onto 

the corresponding physical axes.  

The following figure shows a graphical representation of the above equations for a quadratic × 

cubic GNURBS surface constructed over the knot vectors  1 2
3 30,0,0, , ,1,1,1Ξ  and 

 1 2
3 30,0,0,0, , ,1,1,1,1  . Random weights in z-direction have been assigned to the control 

points and the control points are plotted proportional to these weights in size for better insight.  



 

Figure 5. Geometric representation of the bounding box property for a GNURBS surface. 

Since each of these projected surfaces is a classic NURBS surface, they satisfy the convex hull 

property. Therefore, the middle knot-element of the surface which is marked in Figure 5, must lie 

within the convex hulls of its corresponding control points on all three projected surfaces. That is, 

if    1 2 1 2, , ,
3 3 3 3

    
 

, then  ,x  S  lies within the convex hull of the control points 

 , 0,0klx , 1 3k    and 1 4l    which is the space between the two planes parallel to yz-plane. 

Similarly,  ,y  S  lies within the convex hull of the control points  0, ,0kly , 1 3k   and 

1 4l    which is the area between the two planes parallel to xz-plane, and  ,z  S  lies within 

the convex hull of the control points  0,0, klz , 1 3k   and 1 4l   which is the area between 

the two planes parallel to xy-plane. Consequently,  , S is contained in the intersection of these 

six planes, which is the highlighted box area shown in Figure 5, referred to as the axis-aligned 

bounding box of klP , 1 3k    and 1 4l  . It is obvious that this property is less strict than the 

strong convex-hull property of classic NURBS surfaces.  

 



3. Non-isoparametric 3D GNURBS surfaces with partial decoupling of the weights 

A more practical variation of GNURBS, which will be the emphasis for the rest of this paper, is 

obtained by partial decoupling of the weights. In particular, for 3D surfaces, one can use the same 

set of in-plane weights along x and y directions, denoted by xyw , and a different set of out-of-plane 

weights in z direction zw . Accordingly, Eq. (3) could be re-written in the following expanded form  
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where 
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Observe that owing to this decoupling of the in-plane and out-of-plane weights, unlike in classic 

NURBS, one can now freely manipulate the weights along z direction, for instance, without 

perturbing the geometry or parameterization of the underlying planer surface in x-y plane.  

3.1. Equivalence with NURBS 

Despite losing some properties of NURBS which might be of interest in certain applications, we 

recall here a theorem [24] which establishes that GNURBS are nothing but disguised forms of 

higher-order classic NURBS. Therefore, all the properties of NURBS can be recovered through a 

suitable transformation and a strong theoretical foundation will be ensured. 

Theorem 1. A 3D GNURBS surface of degree  ,p q  with partially decoupled set of weights 

( , )xy zw w , can be exactly transformed into a higher order NURBS surface of degree  2 , 2p q  in 

the following form: 
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where 
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in which ( , , , )ij ij ij ijX Y Z W  are the coordinates and weights of the 1 2
ˆ ˆ( 1) ( 1)n n    control points of 

the equivalent higher order NURBS surface. The proof of this theorem has been provided in [24].  

As discussed in [24], in the special case of Rational Bézier (R-Bézier) surfaces, the following 

straightforward analytical expressions can be obtained for the coefficients of the equivalent higher 

order R-Bézier surface: 
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Figure 6(a) shows an example of a degree (2,3)th GNURBS surface with random directional 

weights assigned in z-direction. Its equivalent higher order NURBS surface obtained using the 

above theorem is depicted in Figure 6(b). Note that the size of control points in these figures are 

plotted proportional to their weights for better insight. 



 
(a) 

 
(b) 

Figure 6. (a) A degree (2,3)th GNURBS surface with random weights assigned in z-direction, and (b) its 
equivalent (isoparametric) NURBS surface of degree (4,6). 

 



4.  Generalized NURBS surfaces: isoparametric form via implicit decoupling of the weights 

It is interesting to note that the equivalent higher order NURBS representation in (9) itself provides 

another variation of NURBS which can be directly employed as another alternative to NURBS 

with better flexibility in many applications.  

In order to clarify how this equation provides additional flexibility than classic NURBS, we first 

derive a more generic form of this equation via an alternative approach using an extension of order 

elevation technique. In this case, we limit our study to rational Bézier surfaces for simplicity.  

Assume a 2D R-Bézier surface of degree (p,q) is given as follows  
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In order to elevate the degree of this surface by (r, s), we can simply multiply both numerator and 

denominator of this equation by any arbitrary expression in the following form 
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Recalling Theorem 1, we can obtain the higher order R-Bézier surface with (r, s) degree elevations 

as 
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in which ˆ ˆ,p p r q q s     and  , ,ij ij ijX Y W  can be obtained using the following relations  
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Observe that this procedure can be seen as a natural extension of the classic order elevation 

techniques in the literature [25, 26]. In fact, one can simply recover the common order elevation 

algorithm by assigning 1, ( , )z
ijw i j   in Eq. (13). We will refer to this procedure as generalized 

order elevation hereafter. Now assume we intend to add another dimension to the degree-elevated 

representation in Eq. (14) in an isoparametric manner. For this purpose, we extend this equation 

as 
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It is interesting to notice that, although Eq. (17) apparently seems to be a classic R-Bézier surface, 

it provides additional flexibility. Observe that in the above procedure, z
ijw  are arbitrary variables 

which can be freely chosen without perturbing the geometry or parameterization of the underlying 

surface in x-y plane. For better insight, we perform degree elevation on a circular annulus using 

the above procedure with different selections of z
ijw and discuss how it differs from classic degree 

elevation technique. 

For this purpose, we generate a 3D ˆ ˆ( , ) (3,2)p q   isoparametric GR-Bézier surface by performing 

the above degree-elevation processes with    , 1,1r s   on an initial quarter annulus modelled by 

a ( , ) (2,1)p q   R-Bézier surface depicted in Fig. 6(a) and specifying the heights of control points 

of the degree-elevated surface as shown in Table 1.  



Table 1. Assigned heights (zij) to the control points of the resulting degree-elevated isoparametric GR-
Bézier surface. 

 i=0 i=1 i=2 i=3 

j=0 0 1 1 0 

j=1 0 1 1 0 

j=2 0 1 1 0 

 

 

Figure 7. Configuration of the quarter annulus. 



 

Figure 8. Exact representation of the quarter annulus with normal parameterization using a (p, q)=(2,1) 
rational Bézier surface. 

The obtained results for classic order elevation, that is, assuming unit values for all isoparametric 

control weights as in the following equation: 
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are shown in Figure 9.  



 

(a) 

 

(b) 

Figure 9. Classic degree-elevated R-Bézier representation of the quarter annulus with control variables of 
Table 3.1: (a) top view, (b) 3D view. 

Moreover, the obtained results for generalized order elevation by assuming the following values 

for isoparametric control weights: 
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are depicted in Figure 10.  

 

(a) 

 

(b) 

Figure 10. Generalized degree-elevated R-Bézier representation of the quarter annulus with control 
variables of Table 3.1: (a) top view, (b) 3D view. 



As can be clearly seen in these figures, in both cases, the in-plane representation of the annular 

ring as well as its parameterization has remained unchanged. However, the out of plane 

deformation of the annular ring in the two cases are not identical.  

While this variation of NURBS, which will be referred to as isoparametric GNURBS hereafter, 

similarly provides the same important possibility of treating the out of plane weights as additional 

degrees of freedom, it provides different advantages. In particular, unlike the first variation, it 

allows for introducing customized rationality for approximation, i.e. the number of coefficients to 

be considered as design variables in the denominator can be controlled here. Further, it directly 

lies in the NURBS space; hence, all the properties of NURBS are naturally satisfied.  

The above algorithm can also be extended to NURBS in a straightforward manner using a similar 

three step algorithm elaborated above. That is, Eq. (17) also holds true for NURBS:  
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with the rational basis functions defined as 
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The proposed generalizations of NURBS in Eqs. (7) and (20) can effectively improve the 

performance of NURBS in a wide area of applications. Exploring all these applications, however, 

is beyond the scope of this study. We limit our study here to a few classic examples in geometric 

modelling, that is the approximation of certain class of surfaces such as helical, revolved or 

minimal surfaces using GNURBS; and concisely point out some of their potential broader areas 

of applications. Finally, hereafter, we will persistently refer to Eq. (7) as the first generalization of 

NURBS or non-isoparametric GNURBS, while we will refer to Eq. (20) as the second 

generalization of NURBS or isoparametric GNURBS.  

5. Least-square surface approximation using NURBS versus GNURBS 

In this section, we demonstrate that the proposed generalizations of NURBS are able to provide 

superior approximation for certain class of surfaces compared to classic NURBS. We assume here 



that a planar geometry with precise representation using NURBS, such as the annular ring in Figure 

8, is given as: 
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Next, we assume that an analytical height function ( , )z    is given and needs to be approximated 

with minimal error over the given planar surface. The problem can be posed as a least square 

approximation problem which leads to optimal accuracy in L2-norm. Considering 

    , , , :s s s s sx y z s     as a set of cn  chosen collocation points, the error function f  to be 

minimized is defined as 
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  (23) 

where ˆ( , )z    is the approximated NURBS function, s  is the set of indices of non-zero basis 

functions at  ,s s  , ( , )s s sz z   , and Lz are the unknown control variables. For simplicity, the 

global index L is used for numbering which is defined as 1( 1) 1L j n i     for the basis ( , )i j .  

In the following, we provide the detailed formulation of this problem using NURBS as well as its 

different proposed generalizations.  

5.1. Linear least-square approximation using NURBS 

In the case of NURBS, the only unknowns to consider are control variables Lz . Taking the partial 

derivatives of f with respect to the unknowns Lz , and setting them to zero yields  
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where    1 21 1Tn n n     denotes the total number of control points. Eq. (25) could be written 

in the matrix form 
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which represents a classic linear least square problem and can be easily solved for the Tn  

unknowns  1,...,
Tnz zλ  by proper choice of collocation points. 

5.2. Non-linear least-square approximation using non-isoparametric GNURBS 

In order to improve the accuracy of the above discussed NURBS-based approximation, we develop 

a non-linear least-square minimization algorithm using 1st GNURBS. Invoking the non-

isoparametric GNURBS surface with partial decoupling of the weights in Section 3, we can treat 

the out of plane weights z
Lw  as extra design variables without perturbing the geometry or 

parameterization of the underlying precise planar surface ( , )xy  S . We may refer to these 

variables as control weights hereafter.  

The objective function to be minimized could still be written as (23). However, the vector of design 

variables now changes to  1 1,..., , ,...,
T T

z z
n nz z w w λ . Moreover, the following bounding 

constraints on control weights are often desired to be satisfied for numerical stability. 

 0, 1,...,z
k Tw k n    (27) 

Eq. (23) with the new vector of design variables λ  establishes a non-linear least-square 

optimization problem which could be solved using different existing algorithms. Some of these 

algorithms, such as Levenberg-Marquardt, do not allow for the imposition of bounding constraints 

on design variables. In this case, one can easily apply an exponential transformation to control 

weights to ensure their positivity without the imposition of bounding constraints as in [21]. We 

will use here the trust-region-reflective algorithm which is available in MATLAB and allows for 

the imposition of bounding constraints on design variables.  

In order to solve the established problem, the Jacobian matrix is required. The Jacobian matrix J  

is composed of two parts  

 [ ]z wJ J J   (28) 



where zJ contains the partial derivatives of f  with respect to kz , while wJ  includes the partial 

derivatives of f  with respect to z
kw . Differentiating with respect to kz , zJ  will be easily derived 

as 
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The other component of the Jacobian matrix can be obtained as 
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In order to evaluate the partial derivatives with respect to weight design variables, we rewrite 

 ˆ ,z    as 
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where ,(    and ,(    are 
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Using these definitions, we can obtain 

 
 

 
ˆ , ( ,

ˆ , , 1,...,
( ,

z
k k

k Tz
k

z N w
z z k n

w

   
 

 

 
     

  (34) 

Having the analytical Jacobian matrix components in Eqs. (29) and (30), we can now solve the 

established non-linear least-square optimization problem efficiently. We impose the initial 

conditions by setting all the control variables to zero and all the control weights to 1, i.e.  
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5.3. Non-linear least-square approximation using isoparametric GNURBS 

Since the derivation of analytical Jacobian matrix with this generalization becomes complicated 

in case of having internal knots, we limit our derivation here to GR-Bézier. Invoking the 

isoparametric GR-Bézier representation in Eq. (17), we can again establish the approximation 

problem as a non-linear least square problem with the objective function defined in Eq. (23) but 

with the new set of design variables  1 1,..., , , ...,
T d

z z
n nZ Z w w λ  where    1 1dn r s     is the 

total number of isoparametric control weights, and    ˆ ˆ1 1Tn p q     is the total number of 

control points. The Jacobian matrix J  can again be divided into two components where zJ  

contains the partial derivatives of f  with respect to kZ , while wJ  includes the partial derivatives 

of f  with respect to z
lw . Differentiating with respect to kZ , zJ  will be easily derived as 
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Also, wJ  can be obtained as 
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In order to evaluate the partial derivatives of ˆ(z    with respect to isoparametric control weights 

z
lw , we rewrite  ẑ   as 
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where (   and (   are 
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With these definitions, we can obtain the required derivatives as 
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The derivatives in above equation can be evaluated using the following expressions  
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where 
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Similar to previous case, we specify the initial conditions as follows 
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As previously discussed, by changing z
lw  during the optimization process, the in-plane coordinates 

of control points also vary at each iteration. However, since the in-plane geometry and 

parameterization are always fixed, one may only re-evaluate and update these coordinates after the 

termination of the optimization process according to the obtained optimal set of isoparametric 



basis functions. It is important to note that this algorithm yields the combination of optimal weights 

and the corresponding arrangement of control points which result in the best approximation for a 

given in-plane parameterization. To our knowledge, no such investigation has been reported in the 

literature thus far.  

6. Numerical examples 

In this section, we present a few numerical examples of approximating various types of surfaces 

using the proposed generalizations of NURBS and compare the obtained results with those of 

classic NURBS. In all cases, the relative L2-norm of error is calculated using the following relation 
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where all integrations are calculated using Gaussian quadrature.  

6.1. Test case 1: helicoid modelling 

As the first numerical example, we consider the approximation of a partial helical surface with the 

following equation: 
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Figure 11. The helical surface in Eq. (47). 

As observed, the in-plane parameterization of this surface is a quarter annulus with the 

configuration already shown in Figure 7. Since this is a geometric modelling problem where 

preserving the properties of NURBS are of interest, it is an ideal candidate for employing 

isoparametric GNURBS. Accordingly, following the procedure discussed above in Section 5.1, 

we try to approximate the given height function in Eq. (47) and compare the obtained results with 

classic NURBS. The obtained results for different degrees of basis functions are presented in Table 

2. 

Table 2. Error of approximating the height function of helical surface in Eq. (47) using R-Bézier versus 
isoparametric GR-Bézier in relative L2-norm. 

Surface type 
Degree  ˆ ˆ,p q

 ,p r q s    

No. of control 

variables 

No. of control 

weights 
Error Error ratio 

R-Bézier 
(2,1) 6 

0 2.68E-2 
1.0 

2nd GR-Bézier 0 2.68E-2 

R-Bézier 
(3,2) 12 

0 1.28E-4 
1.0 

2nd GR-Bézier 4 1.28E-4 

R-Bézier (4,3) 20 0 1.28E-4 109.4 



2nd GR-Bézier 9 1.17E-6 

R-Bézier 
(5,4) 30 

0 2.22E-6 
180.5 

2nd GR-Bézier 16 1.23E-8 

 

According to this table, by including larger numbers of control weights, better improvement of 

accuracy is achieved. This reveals superior approximation of rational functions especially when 

higher degrees of basis functions are employed. The results, however, show no improvement in 

accuracy for the first level of degree elevation, i.e. ( , ) (1,1)r s  . This implies that the optimal 

values of control weights for this particular level of degree elevation are unity. In other words, 

classic order elevation results in optimal accuracy for the approximation of helical height function 

using this particular degree of basis functions.  

6.2. Test case 2: Scherk minimal surface 

As the second numerical experiment, we consider the construction of a minimal surface model 

referred to as Scherk minimal surface over a square domain. This example has been addressed by 

Pan et al. [27] using isogeometric analysis of minimal surfaces based on extended loop subdivision 

scheme. The equation of this minimal surface is given as 
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which is depicted in Figure 12.  



 

Figure 12. Scherk minimal surface. 

As the figure shows, the surface features steep gradients near the boundaries. In this example, for 

simplicity, we use non-isoparametric GNURBS and compare its approximation properties with 

classic NURBS. The obtained results using various employed degrees of basis functions are shown 

in Table 3. As observed, the accuracy of approximation using 1st GNURBS in all cases is better 

than that of classic NURBS. Further, the increase in accuracy substantially improves when larger 

degrees of basis functions are used.  

Table 3. Error of approximating the Scherk minimal surface in Eq. (48) using NURBS versus 1st 
GNURBS in relative L2-norm. 

Surface type Degree (p,q) 
No. of control 

variables 

No. of control 

weights 
Error Error ratio 

NURBS 
(2, 2) 25 

0 1.52E-1 
18.76 

1st GNURBS 25 8.11E-3 

NURBS 
(3, 3) 36 

0 9.40E-2 
18.42 

1st GNURBS 36 5.10E-3 

NURBS 
(4, 4) 49 

0 5.02E-2 
142.21 

1st GNURBS 49 3.53E-4 

NURBS 
(5, 5) 64 

0 3.59E-2 
262.04 

1st GNURBS 64 1.37E-4 

 



Moreover, for the case of quadratic basis functions, we also perform a convergence study where 

we persistently refine the knot sequence and compare the obtained accuracy of NURBS versus 

GNURBS. The obtained results are plotted in Figure 13. As the figure shows, the convergence rate 

of GNURBS is more than order faster than classic NURBS, resulting in substantial improvement 

of accuracy especially when larger numbers of control points are used.   

 

Figure 13. Convergence rate of quadratic NURBS versus GNURBS for the approximation of Scherk 
minimal surface. 

 

6.3. Test Case 3: Surface of revolution 

As the final numerical study, we consider the problem of the approximation of a surface of 

revolution defined using Eq. (49), which is depicted in Figure 14. 
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Figure 14. The surface of revolution in Eq. (49). 

As observed, the surface has an exponential behavior along the radial direction. In this example, 

we demonstrate how employing the second proposed variation of NURBS could be useful for 

improved approximation of these type of surfaces using the same number of control points. For 

simplicity, we only consider modelling a quarter of the surface, i.e. (0 4)   . Similar to the 

first numerical example, we start with the initial model of degree ( , ) (2,1)p q   in Figure 8. Since 

the height function here only varies along the radial direction, we only elevate the degree along 

this direction ( )  and compare the obtained approximation results using Bézier (classic order 

elevation) with those of isoparametric GR-Bézier (optimal order elevation). The obtained results 

for ( , ) (0,0)r s   up to ( , ) (0,3)r s   are presented in Table 4.  

Table 4. Error of approximating the height function of the surface of revolution in Eq. (49) using R-
Bézier versus isoparametric GR-Bézier in relative L2-norm. 

Case No. Surface type 
Degree  ˆ ˆ,p q

 ,p r q s    

No. of 

control 

variables 

No. of 

control 

weights 

Error 
Error 

ratio 

1 R-Bézier 
(2,1) 6 

0 0.20E0 
1.0 

2 2nd GR-Bézier 0 0.20E0 



3 R-Bézier 
(2,2) 12 

0 3.42E-2 
45.25 

4 2nd GR-Bézier 4 7.55E-4 

5 R-Bézier 
(2,3) 20 

0 7.10E-3 
43.58 

6 2nd GR-Bézier 9 1.63E-4 

7 R-Bézier 
(2,4) 30 

0 1.12E-3 
1.26E4 

8 2nd GR-Bézier 16 8.90E-8 

 

According to this table, the accuracy of approximation by using isoparametric GR-Bézier is 

significantly higher than that of classic Bézier, especially when higher order elevations are applied. 

These results clearly show the superiority of rational functions for the approximation of this class 

of surfaces.  

Finally, the corresponding arrangements of control points for cases 3 to 8 are represented in Figure 

15. As observed, the arrangements of control points in all cases only differ along the radial 

direction. This was expected to be the case, since in this example, order elevation has only been 

performed along the radial direction.  

     

  (a) (b)  



     

 (c) (d) 

     

 (e) (f) 

Figure 15. The resulting control net for the approximation of the surface of revolution in Eq. (49): (a) 
Case 3, (b) Case 4, (c) Case 5, (d) Case 6, (e) Case 7, and (f) Case 8. 

 

7. Extensions and further applications 

While, in this paper, we limited our study to applying the proposed generalizations to NURBS, 

due to fundamental similarities between different variations of splines, similar generalizations 



seem plausible to other rational forms of splines such as T-spline surfaces, Tri-angular Bézier 

surfaces etc.  

In addition to the discussed applications of GNURBS in CAGD, other applications of NURBS in 

this area can be found where employing the weights as additional design variables for better 

flexibility can be problematic or sometimes impossible. For instance, GNURBS may also help 

circumventing the difficulties of considering the weights as degrees of freedom in general surface 

fitting problems with arbitrary parameterization. As previously studied in [13, 23], employing the 

weights as additional degrees of freedom in data approximation can deteriorate the surface 

parameterization, and lead to undesirable results, especially when approximating rapidly varying 

data. On the other hand, employing GNURBS, by including the control weights as design 

variables, one can create a good surface parameterization and preserve it during fitting without 

imposing any restrictions on the magnitude of variations of the weights.  

Furthermore, NURBS have been extensively used in other disciplines such as computational 

mechanics for the optimization of different fields of interest over a given computational domain. 

Considering these studies, we can find out that in this class of applications, the parameterization 

of the design domain needs to remain fixed throughout the optimization process; see [8, 28–36], 

for instance. Hence, they are only able to treat the out-of-plane coordinates of control points as 

design variables, as the variation of weights alters the underlying parameterization which is 

disallowed. However, owing to the proposed GNURBS representations with decoupled weights, 

one can now treat the control weights as additional design variables while setting up the 

optimization problem and still preserve the underlying geometry as well as its parameterization. 

As elaborated in this research, this can lead to significant improvement in the obtained accuracy 

in both cases of smooth as well as rapidly varying fields. Exploring some of these applications is 

the subject of our future studies. 

 

8. MATLAB toolbox: GNURBS3D-Lab 

In order to facilitate understanding the behavior of GNURBS surfaces and the additional abilities 

they serve, a comprehensive and fully interactive MATLAB toolbox, named GNURBS3D-Lab, 

has been developed. This toolbox is developed via the extension of GNURBS Lab, a similar 

interactive MATLAB toolbox already developed for GNURBS curves [2]. Snapshots of different 



available windows in GNURBS3D-Lab are shown in Figure 16, which demonstrate the 

environment of the toolbox and numerous features that the software provides.  

 
(a) 



 
(b) 

 
(c) 



 
(d) 

Figure 16. Snapshots of different windows of GNURBS3D-Lab: (a) Main window, (b) 3D surface plot 
window, (c) in-plane equivalent NURBS window, and (d) 3D equivalent NURBS window. 

The figure shows an example of designing a 3D surface with an in-plane shape of a quarter annulus 

and a free-form out of plane shape using GR-Bézier. As demonstrated in Figure 16, the toolbox is 

enabled to evaluate the equivalent higher-order rational Bézier representations with the designed 

surface in 2D and 3D interactively. Employing the provided wide range of tools shown in Figure 

16(a), one can easily manipulate any defining parameter of the surface, including the locations of 

control points, or a variety of weight components, and observe the changes interactively in all four 

windows shown in Figure 16, simultaneously.  

The open-source toolbox is available at http://www.ersl.wisc.edu/software/GNURBS3D-Lab.zip. 

Detailed instructions for using this toolbox are also provided in an additional document 

GNURBS3D_Manual.pdf accessible via the same link. 

9. Conclusion 

We introduced two generalizations of NURBS surfaces, referred to as GNURBS, by decoupling 

of the weights associated with the control points along different physical coordinates. These 



generalizations were obtained via either explicit or implicit decoupling of the weights leading to 

non-isoparametric and isoparametric representations, respectively. As demonstrated, both these 

variations improve the flexibility of NURBS and circumvent its deficiencies by providing the 

possibility of treating the weights as additional design variables in special applications. It was 

proved that these representations are only variations of classic NURBS and do not constitute a new 

superset of NURBS. Superior approximation abilities of these variations for both smooth and 

rapidly varying functions were shown via simple examples in surface modelling. It was shown that 

GNURBS can be effectively used for improved construction of various types of surfaces such as 

helicoids, minimal surfaces as well as surfaces of revolution using the same number of control 

points. A comprehensive MATLAB toolbox, named GNURBS3D-Lab, was developed and 

introduced to better demonstrate the behavior of different types of GNURBS surfaces in a fully 

interactive manner. In summary, GNURBS were shown to serve as a new effective technology in 

surface modelling with superior accuracy while merely being disguised forms of classic NURBS. 
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