
Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

Direct Lagrange Multiplier Updates in Topology Optimization Revisited

Tej Kumar · Krishnan Suresh

Received: date / Accepted: date

Abstract In topology optimization, the bisection method is
typically used for computing the Lagrange multiplier associ-
ated with a constraint. While this method is simple to imple-
ment, it leads to oscillations in the objective and could pos-
sibly result in constraint failure if proper scaling is not ap-
plied. In this paper, we revisit an alternate and direct method
to overcome these limitations.

The direct method of Lagrange multiplier computation
was popular in the 70s and 80s but was later replaced by
the simpler bisection method. In this paper, we show that
the direct method can be generalized to a variety of linear
and nonlinear constraints. Then, through a series of bench-
mark problems, we demonstrate several advantages of the
direct method over the bisection method including: (1) fewer
and faster update iterations, (2) smoother and robust conver-
gence, and (3) insensitivity to material and force parame-
ters. Finally, to illustrate the implementation of the direct
method, drop-in replacements to the bisection method are
provided for popular Matlab-based topology optimization
codes.

Keywords Topology Optimization · Optimality Criteria ·
Bisection · Design Constraints · Lagrange Multiplier ·
Design Update

Tej Kumar
Department of Mechanical Engineering
University of Wisconsin-Madison
E-mail: tkumar3@wisc.edu
ORCiD: 0000-0001-8762-8121

Krishnan Suresh
Department of Mechanical Engineering
University of Wisconsin-Madison
E-mail: ksuresh@wisc.edu

1 Introduction

Topology optimization is now a well established method
for computing optimal material distribution within a design
domain that extremizes an objective while meeting a set
of constraints. Popular topology optimization methods in-
clude density methods [6, 29], level-set [27, 37], topologi-
cal derivative [31], evolutionary methods [40], etc. Density
methods, in particular, “Solid Isotropic Material with Penal-
ization” (SIMP) are the most popular today. In SIMP, finite
element method is used as the analysis engine, and each fi-
nite element e is associated with a design variable xe. Then
the topology optimization problem is posed as:

minimize
x

J(x,u) (1a)

subject to K(x)u = f (1b)

g(x,u)≤ g∗ (1c)

x≤ xe ≤ x ∀e (1d)

where the objective function J is dependent on the design
variables x and state variables u. The latter is computed via
the governing Eqn. (1b) where K(x) is the stiffness matrix
and f is the force vector.

Note that the design constraint is defined via Eqn. (1c),
while Eqn. (1d) are the box constraints that sets lower (x)
and upper bounds (x) on the design variables. A typical in-
stance of the above problem is compliance minimization
where:

J(x,u) = uTK(x)u (2)

subject to a volume constraint:

g(x) = ∑
e

xeve (3)

where ve is the volume of element-e. There are several open-
source SIMP-based codes for solving such problems; the 99-
line code [28] being the first. This was later improved for

2 Tej Kumar, Krishnan Suresh

speed in the 88-line version [4]. Several codes followed, and
these are listed in Table 1.

A typical density-based method is described in Algo-
rithm 1 which consists of outer and inner iterations. The
former corresponds to the outer-loop where a finite element
problem is solved to compute design sensitivities, while the
latter corresponds to the inner-loop where the design vari-
ables and Lagrange multipliers are updated [4]. Inner itera-
tions are also referred to as design update iterations or sim-
ply update iterations.

Algorithm 1 Density-based topology optimization
1: Initialize variables
2: while max(| ∆x |)> 0.01 do . Outer-loop; typical convergence

criteria
3: Analyze and compute sensitivity
4: while Constraint not satisfied do . Inner-loop;
5: Update design variable x and Lagrange multiplier
6: end while
7: end while

In the inner-loop, a design variable update can be per-
formed using various methods. For example, mathematical
programming methods such as CONLIN [14] or method of
moving asymptotes (MMA) [32] is used for multiple con-
straints [10], whereas optimality criteria (OC) is more pop-
ular [9, 35, 16] for single constraint problems [4, 2] due
to its speed. The equivalence between mathematical pro-
gramming methods and optimality criteria was established
by Fleury and co-workers [13, 26, 14] and later by many
other researchers [5, 16, 3, 15]. In OC, the design variables
are identified as active or passive, where a design variable
is active if it lies strictly between the bounds of box con-
straint (1d), else it is passive [35, 16]. Then by representing
the ratio of objective sensitivity to constraint sensitivity as:

Re =

∂J
∂xe
∂g
∂xe

(4)

the active design variables are updated in density-based meth-
ods as follows [28, 4]:

xnew
e = xe(−Re/Λ)η (5)

where η is a damping coefficient (typically 0.5), and Λ is
the unknown Lagrange multiplier. Eqn. (5) is typically used
for volume-constrained compliance minimization given in
Eqn. (2) and (3). In some cases, e.g., compliance-constrained
volume-minimization [2, 1], the following update for active
design variables is used

xnew
e = xe(Λ/(−Re))

η (6)

Hereon, the former definition is used unless stated other-
wise. Further, to ensure that all design variables lie within

the box constraints, additional limits are imposed [28, 4]:

xnew
e = max

(
xe,min

(
xe,xe(−Re)

η
Λ
−η
))

(7)

where xe =max(x,xe−µ), xe =min(x,xe +µ) are the mod-
ified box constraints, with µ as the move limit (typically
0.2). Thus, at the end of each inner iteration, the design vari-
able lie within the modified box constraint:

xe ≤ xnew
e ≤ xe (8)

Note that the Lagrange multiplier Λ in Eqn. (5) is un-
known, and is typically computed using the bisection method,
the main topic of this paper. The bisection method is de-
scribed in Section 2, followed by a summary of its draw-
backs. The objective of this paper is to revisit a direct method
for computing Λ that relies on the definition of active and
passive design variables. The direct method is described in
Section 3, and illustrated using various constraint scenarios.
Several numerical examples illustrating the merits of the di-
rect method are analyzed in Section 4. Conclusions and sam-
ple code are provided in Section 5 and Appendix, respec-
tively.

2 Bisection Method

The bisection method is the de facto standard for estimating
the Lagrange multiplier Λ in Eqn. (5). Every open source
code in Table 1 except Sui and Yi [30] uses this method. A
typical implementation of the bisection method is summa-
rized in Algorithm 2. It starts by initializing two bounds Λ1
and Λ2 on the Lagrange multiplier via two constants Λ and
Λ . The lower bound Λ is almost always zero whereas the
upper bound Λ is a large constant. Next, the inner iteration
is carried out where the design variables xnew are updated
using Eqn. (7), using the mean value Λmid of Λ1 and Λ2 as
the estimation for the Lagrange multiplier. Then, the bounds
Λ1 and Λ2 are updated depending on the violation of the
design constraint as in Algorithm 2. The iteration terminates
when either (Λ2−Λ1) or (Λ2−Λ1)/2Λmid is relatively small
(some authors choose the former, while others prefer the lat-
ter).

While the bisection method is simple and effective, it
only approximates the Lagrange multiplier Λ to an accuracy
dictated by the convergence constant ε . Consequently, since
the associated constraint is not satisfied exactly, oscillations
can be observed in the objective as demonstrated later via
numerical examples. Finally, since the value of the Lagrange
multiplier Λ depends on the (scaling of the) problem pa-
rameters, one should suitably choose the search window de-
fined by Λ and Λ , i.e., if Λ lies outside the search window,
the bisection method may fail to converge. For example, for
the MBB beam problem, with E = 1 and F = 1000, over a

Direct Lagrange Multiplier Updates 3

Table 1: Open source codes that use SIMP.

Year Authors Objective Code Description

2001 [28] O. Sigmund Compliance top 99-line code

2003 [8] M. P. Bendsøe, O. Sig-
mund

Output displacement,
thermal compliance,

topm, toph Compliant mechanism and
thermal optimization

2004 [17] G. Kharmanda, N. Ol-
hoff, A. Mohamed, M.
Lemaire

Compliance RBTO Reliability based optimiza-
tion

2011 [4] E. Andreassen, A.
Clausen, M. Schevenels,
B. S. Lazarov, O.
Sigmund

Compliance top88 88-line code: faster than 99-
line code, includes density
filter

2012 [33] C. Talischi, G.H.
Paulino, A. Pereira,
I.F.M. Menezes

Compliance PolyTop Polygonal mesh

2013 [23] X. Qian Compliance btop85 Spline basis function

2013 [30] Y. Sui, G. Yi Volume top120 Displacement constraint

2014 [21] K. Liu, A. Tovar Compliance top3D 3D code

2014 [2, 1] N. Aage, B. S. Lazarov,
O. Amir

Compliance top2dmgcg Multigrid conjugate gradi-
ent solver

2014 [34] R. Tavakoli, S.M.
Mohseni

Compliance multitop Multimaterial

2015 [39] L. Xia, P. Breitkopf Bulk modulus, Shear
modulus

topX Design of material

2017 [42] W. Zuo, K. Saitou Compliance top Multimaterial

2018 [25] E.D. Sanders, A. Pereira,
M.A. Aguilo, G.H.
Paulino

Compliance PolyMat Multimaterial code using
PolyTop

2019 [20] T. Kumar, K. Suresh Compliance MTO Multiscale design

2019 [38] S. Watts, W. Arrighi, J.
Kudo, D. A. Tortorelli,
D. A. White

Compliance MultiScale-
TopOpt

Lattice surrogate models

Algorithm 2 Bisection method

1: Λ1←Λ , Λ2←Λ . Constants Λ and Λ ;
2: Λmid← (Λ1 +Λ2)/2
3: while (Λ2−Λ1)< ε (or (Λ2−Λ1)/2Λmid < ε) do . An arbitrary

small constant ε

4: Compute xnew wherein Λ ←Λmid . Using Eqn. (7)
5: if g(xnew)> g∗ then
6: Λ1←Λmid
7: else
8: Λ2←Λmid
9: end if

10: Λmid← (Λ1 +Λ2)/2
11: end while
12: x← xnew

60×20 mesh, with a target volume fraction of 0.5, the typ-
ical value for Λ is around 6×105 (it varies during the opti-
mization process). The 99-line code, with the default search
window of Λ = 0 and Λ = 1× 105, therefore fails to con-
verge.

3 Direct Computation of Lagrange Multiplier

To address these limitations, we revisit the direct method for
computing the Lagrange multiplier. This method was used
during 70s and 80s [36, 18, 9, 35] for structural optimiza-
tion. Although the description “direct method” was not used
then, we use that term here to distinguish it from the bi-
section method. The direct method satisfies the design con-
straint exactly by assuming that the design constraint (for
example, the volume constraint) remains active; indeed, the
bisection method also relies on this assumption.

As it is evident from Table 1, the bisection method over-
shadowed the direct method in later years. However, more
recently, the direct method was used in a displacement con-
strained, volume-minimization topology optimization prob-
lem [30]. Here, we revisit the direct method, providing and
illustrating its MATLAB implementation, for a series of con-
strained problems. The direct method is characterized by (1)

4 Tej Kumar, Krishnan Suresh

exact satisfaction of the design constraint, obviating the need
for scaling and search window for the Lagrange multiplier,
and (2) applicability for various combinations of objective
and constraints, provided these do not involve a nonlinear
coupling of the variables, or a separable approximation is
employed, as explained later in the paper.

3.1 Concept

For simplicity, consider the volume-constrained, compliance-
minimization problem discussed earlier. Since the volume
constraint remains active i.e. ∑e xeve = g∗, the updated de-
sign variables must satisfy:

∑
e

xnew
e ve = g∗ (9)

i.e.,

∑
e

xe(−Re)
η

Λ
−η ve = g∗ (10)

Therefore, the Lagrange multiplier can be directly computed
via:

Λ =

(
∑e xe(−Re)

η ve

g∗

) 1
η

(11)

This can now be substituted in Eqn. (5) to compute the new
design variables. However, the new design variables can vi-
olate the modified box constraints (8). To correct for this, we
separate the design variables into two sets: SP is the set of
passive design variables that do not satisfy the modified box
constraints, and SA is the set of active design variables that
satisfy the modified box constraints. As before, Eqn. (8) is
enforced on all design variables in SP. This implies that the
active variables must satisfy:

∑
i∈SA

xnew
i vi = g∗− ∑

i∈SP

xnew
i vi (12)

Thus Λ is recomputed via:

Λ =

(
∑i∈SA

xi(−Ri)
η vi

g∗−∑i∈SP xnew
i vi

) 1
η

(13)

The process is repeated until no change in observed in the
two sets of variables (as opposed to checking for conver-
gence in Λ within a certain tolerance). The direct method is
summarized in Algorithm 3.

Note that the direct method does not require scaling, i.e.,
the constraint is satisfied exactly for all values of E and F
since there are no artificial bounds on the Lagrange mul-
tiplier. Further, as opposed to the bisection method with a
convergence criteria (Λ2 −Λ1)/2Λmid < ε , the total num-
ber of inner iterations remain constant for all values of E
and F . This is consistent with the well-known observation

Algorithm 3 Direct method
1: SA = {1 . . .N}, SP = φ . Assign all N elements to SA and let SP

be empty
2: ∆SP← 1 . ∆SP: Change in set SP
3: while ∆SP do
4: Compute Λ . Using Eqn. (13)
5: Compute xnew . Using Eqn. (5)
6: Set SP = {i|xnew

i < xi||xnew
i > xi} and identify ∆SP

7: SA = {1 . . .N}−SP
8: Update xnew

i ∀i ∈ SP . Eqn. (8)
9: end while

10: x← xnew

that the scaling of E and F does not change the final design
in linear elastic problems, and therefore, the characteristics
of optimizer such as the number of inner iterations should
not change. In summary, the direct method: (1) avoids ini-
tial search window and convergence tolerance for Lagrange
multiplier, (2) obviates the scaling of objective or constraint,
and (3) obviates the scaling of E and F .

3.2 Generalizations

In the previous section, we considered the simple case of a
volume-constrained, compliance-minimization problem. The
direct method can be generalized to other problems as well,
as explained in this section.

3.2.1 Generalized Linear Constraint

Consider the case when the constraint is a generic linear
combination of the design variables:

g(x) = ∑
e

∑
i

geixi (14)

Once again, assuming that the design constraint is active,
the Lagrange multiplier can be computed via:

Λ =

(
∑i∈SA

(xi(−Ri)
η

∑e gei)

g∗−∑i∈SP (x
new
i ∑e gei)

) 1
η

(15)

This leads to the design update equation:

xnew
e = xe(−Re)

η

(
g∗−∑i∈SP (x

new
i ∑e gei)

∑i∈SA
(xi(−Ri)η ∑e gei)

)
∀e ∈ SA

(16)

3.2.2 Filtered Design Variables

It is fairly common in topology optimization to use filtered
design variables [4]:

x̃e =
∑i∈Ne Heixi

∑i∈Ne Hei
= ∑

i∈Ne

H̃eixi (17)

Direct Lagrange Multiplier Updates 5

where H̃ei = Hei/∑i∈Ne Hei serves as a smoothening filter.
Observe that the filter can be expressed as

hei =

{
H̃ei if i ∈ Ne
0 otherwise

(18)

that leads to:

x̃e = ∑
i

heixi (19)

Thus the constraint can be expressed as:

g(x) = ∑
e

x̃eve = ∑
e

∑
i

heixive (20)

Comparing Eqn. (20) and Eqn. (14), we have gei = heive (di-
rect multiplication of the two scalars is implied here, not a
summation); thus Eqns. (15) and (16) directly apply.

3.2.3 Multiple Volume Constraints

Sometimes multiple volume constraints are imposed for achiev-
ing local volume control [24], or in multi-material optimiza-
tion, constraints are applied to assign one or more materials
to a region of interest [25]. In both cases, one can identify
mutually exclusive set of design variables associated with
kth constraint represented by Gk. This leads to a set of con-
straint equations:

∑
e∈Gk

vexe = g∗k k = 1...Nc (21)

for Nc volume constraints. Since the sets Gk are mutually
exclusive, each Lagrange multiplier Λk, and the correspond-
ing set of design variables xe can be computed using Al-
gorithm 3 independently. On the other hand, when the con-
straints are imposed on the filtered design variables x̃e, then
we have:

∑
e∈Gk

ve ∑
i

heixi = g∗k k = 1...Nc (22)

Each constraint is now dependent on all the design variables,
i.e., the sets are not mutual exclusive. In this case, the fil-
tered design variables x̃e which are still mutually exclusive,
are used to update individual Lagrange multiplier Λk. How-
ever, for imposing the modified box constraint, Eqn. (17) is
solved by inverting the filter matrix [hei]. Finally, the sets
SP and SA are identified as in Algorithm 3 and the procedure
continues till convergence. An alternative is to use constraint
approximation discussed below for nonlinear constraints.

Another class of multi-constraint problem is where one
design variable might be directly shared across two or more
constraints. In this case, while active-set OC algorithm was
suggested in [16, 41], mathematical programming methods
such as method of moving asymptotes (MMA) [32], are per-
haps a better alternative [8].

3.2.4 Nonlinear Constraints

We now consider the case when g(x) is a nonlinear func-
tion of the design variables. This can typically arise in a
compliance-constrained or displacement-constrained, volume-
minimization problem where the design variables are non-
linearly coupled. Here, it is typical to rely on local approxi-
mations [1]. For example, a simple Taylor series approxima-
tion leads to:

g(xnew) = g(x)+∑
e

(
∂g
∂xe

(xnew
e − xe)

)
= g∗

Rearranging terms:

∑
e

∂g
∂xe

xnew
e = ∑

e

∂g
∂xe

xe +(g∗−g(x)) (23)

Thus, we arrive at the expression for Λ using alternate defi-
nition of active design variable given by Eqn. (6):

Λ =

g∗−g(x)+∑i∈SA
∂g
∂xi

xi−∑i∈SP

(
(xnew

i − xi)
∂g
∂xi

)
∑i∈SA

(
xi(−Ri)−η ∂g

∂xi

)


1
η

(24)

In the case of displacement-constrained problem, the sensi-
tivity of displacement is computed via the adjoint method [19,
11].

For other approximations, the Taylor series expansion
typically involves an intermediate variable ye(xe) as:

g(ynew) = g(y)+∑
e

(
∂g
∂ye

(ynew
e − ye)

)
(25)

For example, the popular reciprocal approximation [13] is
achieved by substituting ye = 1/xe, leading to the approxi-
mation:

g(xnew) = g(x)+∑
e

xe
∂g
∂xe

(
1− xe

xnew
e

)
= g∗ (26)

This leads to:

Λ =

g(x)−g∗+∑i∈SA
xi

∂g
∂xi

+∑i∈SP xi
∂g
∂xi

(
1− xi

xnew
i

)
∑i∈SA

(
xi(−Ri)η ∂g

∂xi

)


1
η

(27)

again using Eqn. (6). Similarly, we have the exponential ap-
proximation [12] obtained by substituting ye = xα

e , leading
to:

g(xnew) = g(x)+∑
i

[(
xnew

i
xi

)α

−1
]

xi

α

∂g
∂xi

= g∗ (28)

6 Tej Kumar, Krishnan Suresh

The Lagrange multiplier is obtained via:

Λ =g∗−g(x)+∑i∈SA
xi
α

∂g
∂xi
−∑i∈SP

[(
xnew

i
xi

)α

−1
]

xi
α

∂g
∂xi

∑i∈SA
(−Ri)−αη xi

α

∂g
∂xi


(

1
αη

)

(29)

Each of the above expressions for Λ can be substituted in
Eqn. (6) to compute the active design variables. In compliance-
minimization, when Eqn. (6) must be used instead of Eqn. (5),
then Λ will be the reciprocal of Eqns. 24, 27, and 29.

3.2.5 Vanishing g∗

Finally, consider the rare case of g(x) ≤ 0 i.e. g∗ = 0 in
Eqn. (1c). In this case, a divide-by-zero error occurs while
solving Eqn. (13) in the very first iteration of Algorithm 3
since the passive set SP is empty. To overcome the issue, one
of the constraint approximations can be used. For instance,
using a linear approximation with Eqn. (5), even though g∗

and g(x) can be zero, the third term in the denominator (in
the reciprocal form of Eqn. (24)) i.e. ∑i∈SA

∂g
∂xi

xi must be
non-zero and thus the divide-by-zero error is avoided.

3.2.6 Handling Pathological Conditions

While computing the Lagrange multiplier, scenarios where
either the numerator or the denominator in, say Eqn. (13), is
zero or negative must be avoided. Observe that Ri is always
negative, vi is always positive, and every xi in active set is
positive; therefore the numerator can be zero only when the
active set SA is empty. The denominator can be zero or neg-
ative typically when the initial design point is far from sat-
isfying the constraint, e.g., starting with a fully solid design
(all xi = 1) for a desired volume fraction of 0.5. Both these
issues are easily resolved by increasing the prescribed move
limit µ; please see the full implementation in Appendix.

4 Numerical Experiments

We now compare the bisecton method against the direct method
through numerical experiments. The MBB beam [4] is used
for the 2D experiments, whereas the edge-loaded cantilever
problem [21] is chosen for the 3D experiment. The first three
experiments involve a volume-constrained, compliance min-
imization problem; for the remaining experiments, the un-
derlying topology optimization problem will be described.
The objective of the numerical experiments are to investi-
gate the following questions:

1. Impact on Topology, Objective and Computational
Time: First, we study the impact of the two methods on
the final topology, objective, and computational time.

2. Oscillations in Objective: It was noted earlier that the
bisection method could lead to oscillations in the objec-
tive; we explore if the direct method resolves this issue.

3. Generalization to 3D: We then briefly investigate the
above questions in 3D.

4. Constraint Approximation: Next, we consider the per-
formance of the direct method to solve a (nonlinear) com-
pliance constrained problem; various constraint approx-
imations are considered.

5. Multi-Constraint: The applicability of the direct method
to handle multiple constraints is explored through a multi-
material topology optimization problem.

6. Multi-resolution: The performance of the direct method
when more than one design variable is associated with
each finite element is studied through a multi-resolution
topology optimization problem.

7. Ease of Implementation: Finally, we consider the im-
plementation of the direct method, as a drop-in replace-
ment to the bisection method, in several open-source soft-
ware.

For the purpose of this paper, only the inner iteration in
various topology optimization codes is modified by replac-
ing the bisection method with the direct method.

4.1 Impact on Topology, Objective and Computational
Time

First, we consider the impact of the direct method on the
final topology, objective and computational time. In particu-
lar, the three mesh sizes and filters described in [4] were con-
sidered in the experiment while using the 88-line code pro-
vided therein. The topologies obtained via the direct method
are illustrated in Fig. 1, and they are indistinguishable from
those obtained via the bisection method [4].

The final objective, the total computational time for op-
timization, time for inner iterations, and the number of outer
(and average inner) iterations are reported in Table 2, for the
two methods, and for two different filters. While the objec-
tive and the number of outer-iterations are almost identical,
the average number of inner iterations reduces almost by a
factor of 10, and therefore, the time for inner iteration re-
duces, especially when a density filter is used, the reduction
is reflected in the reduction in total computational time. This
is to be expected since the density filter is applied in the in-
ner iteration, while the sensitivity filter is applied only in the
outer iteration. This reduction was more pronounced as the
filter size was increased.

Direct Lagrange Multiplier Updates 7

(a) (b) (c)

(d) (e) (f)

Fig. 1: Optimized topologies of MBB beam using direct method. Mesh: 60× 20 (left), 150× 50 (middle), and 300× 100
(right). Top row: sensitivity filter, bottom row: density filter.

Table 2: Bisection versus direct method: 2D MBB problem using two types of filters and three mesh sizes

Filter type Mesh size
Objective Total design (inner iteration) time (s) Outer (avg. inner) iterations

Bisection Direct Bisection Direct Bisection Direct

Sensitivity
filter

60×20 216.81 216.79 3.46 (0.11) 2.96 (0.03) 106 (39.83) 103 (4.49)

150×50 219.52 219.62 10.17 (0.31) 9.93 (0.06) 95 (41.96) 95 (4.83)

300×100 222.29 222.23 42.29 (1.00) 41.84 (0.21) 93 (43.96) 94 (4.93)

Density
filter

60×20 233.71 233.71 4.52 (0.33) 4.30 (0.10) 144 (39.91) 146 (6.11)

150×50 235.73 235.74 56.70 (18.02) 44.52 (6.49) 362 (42.95) 363 (7.59)

300×100 238.31 238.32 783.87 (511.86) 468.60 (196.18) 625 (44.97) 623 (8.69)

4.2 Oscillations in Objective

As noted earlier, since the bisection method approximates
the Lagrange multiplier, oscillations are typically observed
in the objective. We expect these oscillations to be elimi-
nated when the direct method is used. This is confirmed in
Fig. 2a and Fig. 2b that capture the convergence history us-
ing the two methods, for a 300× 100 mesh 2D MBB prob-
lem, using the two filters.

4.3 Extension to 3D

We now repeat the above two experiments in 3D. Among
various 3D topology optimization codes [21, 1], the 169 line
Matlab code [21] is most similar to the 88-line code [4], and
is therefore used here. We consider the 3D cantilever prob-
lem described in [21] with a density filter radius of 1.5 times
element size. The mesh used here is 40× 20× 20 as op-
posed to 30×10×2 in [21] in order to obtain a true 3D de-
sign instead of an extruded 2D design. The resulting topol-
ogy using the direct method is illustrated in Fig 3 which is
once again indistinguishable from those obtained using the
bisection method. Using the bisection method, the algorithm
converged with an objective of 1607.50 in 309 iterations,
whereas, using the direct method it converged to 1607.55 in

264 iterations. Thus, the final design and objective are indis-
tinguishable, but the direct method is faster.

The convergence history for the 3D problem is illus-
trated in Fig. 4. Oscillations are once again observed in the
bisection method. Further, due to the oscillations, an increased
number of outer iterations is observed without any signifi-
cant improvement in objective (leading to larger computa-
tional time).

4.4 Nonlinear Constraint

Next we consider a compliance-constrained, volume mini-
mization problem using the code provided in [1]. As stated
earlier, the nonlinear constraint mandates an approximation
at the design point. Various approximation methods are there-
fore considered in this experiment. Once again, we use the
MBB beam problem with 300×100 mesh, and a compliance
constraint of 250, with a filter radius of 2. The final vol-
ume fraction, total computational (and inner iteration) time,
and the number of outer (and average inner) iterations are
summarized in Table 3, for various approximations. The ex-
ponent values α are based on the generic approximation in
Eqn. (29).

As one can observe, the final volume fraction does not
depend on whether the bisection method or the direct method

8 Tej Kumar, Krishnan Suresh

(a)

(b)

Fig. 2: Convergence history for 300×100 mesh MBB beam: (a) Sensitivity filter (b) Density filter.

Fig. 3: Optimized design for 3D cantilever beam.

is employed. Since the filter is not applied within the inner
iteration even with the density filter, the gain in computa-
tional time using the direct method is only marginal. Here,
the convergence constant ε used in the bisection method is

very small (ε = 1× 10−6) compared to ε = 1× 10−3 used
in 88-line code. This can lead to increased number of inner
iterations and high computational cost. A smart heuristic up-
date is implemented where the upper limit Λ is set to twice
the final Lagrange multiplier value from previous inner iter-
ation. For the very first inner iteration, Λ is set as 1×109.

Designs for various constraint approximations and filters
are illustrated in Fig. 5. These are indistinguishable from
those obtained via the bisection method. Further, the designs
depend more on the constraint approximation than on the
filter type.

4.5 Multiple Constraints

To illustrate the use of the direct method in handling mul-
tiple constraints, a multi-material problem is considered. In
particular, the Matlab code PolyMat [25] is used to solve
the MBB problem with 10000 polygonal elements [33]. Two
different material distribution problems are considered. In
the first problem, four materials with different Young’s mod-
uli are assigned to different regions as illustrated in Fig. 6.

Direct Lagrange Multiplier Updates 9

Fig. 4: Convergence history for 3D cantilever beam with density filter

Table 3: Bisection versus direct method: Compliance-constrained, volume minimization.

Constraint
approximation Filter α

Final volume fraction Total design (inner iteration) time (s) Outer (avg. inner) iterations

Bisection Direct Bisection Direct Bisection Direct

Linear
Sensitivity

(1)
0.357 0.357 117.19 (2.03) 116.50 (1.03) 306 (20.09) 306 (4.78)

Density 0.370 0.370 779.23 (14.52) 775.43 (11.01) 2029 (20.01) 2029 (8.90)

Reciprocal
Sensitivity

(-1)
0.357 0.357 145.79 (2.66) 144.13 (1.55) 381 (20.06) 381 (6.03)

Density 0.373 0.373 247.47 (4.76) 247.35 (3.68) 647 (20.04) 647 (8.92)

Exponent

Sensitivity

-0.5 0.356 0.356 151.63 (5.22) 148.12 (2.45) 380 (20.06) 380 (6.12)

-1.5 0.357 0.357 163.97 (5.75) 161.74 (2.62) 412 (20.07) 412 (6.02)

-2 0.359 0.359 306.13 (10.64) 303.35 (4.87) 775 (20.03) 775 (6.06)

-2.5 0.356 0.356 225.41 (7.95) 221.95 (3.64) 584 (20.05) 584 (5.99)

-3 0.355 0.355 227.42 (8.12) 225.10 (5.23) 584 (20.05) 584 (11.78)

Density

-0.5 0.372 0.372 157.21 (4.59) 155.99 (3.07) 396 (20.06) 396 (8.87)

-1.5 0.373 0.373 380.65 (10.46) 379.47 (7.43) 963 (20.02) 964 (9.03)

-2 0.374 0.374 290.33 (8.40) 289.81 (5.73) 761 (20.03) 761 (8.71)

-2.5 0.375 0.375 135.11 (4.19) 134.85 (2.63) 352 (20.07) 352 (8.27)

-3 0.373 0.373 183.66 (5.47) 182.33 (3.09) 476 (20.06) 476 (6.11)

(a) (b) (c)

(d) (e) (f)

Fig. 5: Design obtained for Linear (left), Reciprocal (middle), and α = −3 Exponential (right) constraint approximations
and sensitivity (top) and density (bottom) filter.

10 Tej Kumar, Krishnan Suresh

In the second problem, the region assignment is removed;
instead each material is allowed to occupy 12.5% of the de-
sign domain. Both problems involve 4 constraints, a multi-
material interpolation model and a continuation scheme [7].
In the PolyMat paper [25], a linear approximation of the
constraint was used along with a density filter; this is re-
tained here. Due to the use of constraint approximation, fil-
ter is not applied in the inner iteration.

Fig. 6: MBB design domain divided into four regions; each
region is assigned a different material with specified volume
fraction Vf .

Designs for the two problems using the direct method
are illustrated in Fig. 7; these are indistinguishable from the
ones obtained by using the bisection method. The objective,
total time required for optimization and inner iteration along
with number of outer iterations and average number of inner
iterations per outer iteration are provided in Table 4. The bi-
section method in PolyMat employs a convergence criteria
(Λ2−Λ1) < ε with ε = 1× 10−4 and Λ = 1× 106 which
gives a constant number (34) of inner iterations, as reported
in Table 4. The objective, number of iterations, and the com-
putational time replicates the observations in previous ex-
amples where the gain in inner-iteration time via the direct
method is insignificant compared to the total time.

4.6 Multi-resolution

In multi-resolution topology optimization [22], numerous
design variables are assigned to a finite element to increase
the resolution of optimized designs. For example, consider
the L-bracket design domain with a unit point load shown
in Fig. 8a with 1600 finite elements; the material has unit
Young’s modulus and a Poisson’s ratio of 0.3. Fig. 8b illus-
trates the optimized design at 50% volume fraction with 64
design variables per element.

As before, the number of inner iterations decreases with
the direct method use. However, unlike the results from pre-
vious experiments, this also leads to a reduction in total
computational time due to the increased design variables per

(a) With region restriction imposed per Fig. 6

(b) Without region restriction, each material Vf = 12.5%

Fig. 7: Multi-material design.

element (independent of whether the volume constraint is
imposed on the design variables or the filtered density vari-
ables). Further, the computational gain increases with in-
crease in the number of design variables as summarized in
Table 5.

4.7 Ease of implementation

Finally, we discuss the ease of implementation of the direct
method, as a drop-in replacement to the bisection method.
Popular codes employing the bisection method were modi-
fied to implement the direct method. These include the 88-
line code [4], 99-line code [28], 169-line 3D code [21], both
2D and 3D versions of compliance-constrained volume min-
imization codes [2, 1], and PolyMat code [25]. The modifi-
cations are summarized in Appendix 7.

5 Conclusions

The bisection method is the de facto standard for design
variable update in density-based topology optimization. It
relies on computing the Lagrange multiplier up to a prede-
fined accuracy. While the method is simple to implement,
oscillations in the objective are typically observed. Some of
the proposed improvements to the bisection method include
(1) stricter convergence control at the cost of increased in-
ner iterations, (2) heuristic updates on the bounds [2, 1], (3)
computing the Lagrange multiplier bounds in each outer it-
eration, and (4) use of constraint approximation to avoid ex-
pensive filter application during inner iterations.

In this paper, we revisit the direct method of Lagrange
multiplier computation as an alternate. It is shown that in
the direct method, the constraint is always satisfied, and the
objective oscillations are completely eliminated. Further, the

Direct Lagrange Multiplier Updates 11

Table 4: Bisection versus direct method: Multiple constraint multi-material problem.

Problem
Final objective Total design (inner iteration) time (s) Outer (avg. inner) iterations

Bisection Direct Bisection Direct Bisection Direct

With region constraint 304.176 304.176 103.74 (1.52) 101.08 (0.48) 248 (34) 248 (4.82)

Without region constraint 274.445 274.388 176.90 (7.58) 168.58 (2.15) 417 (34) 417 (4.89)

(a) (b)

Fig. 8: Multi-resolution TO: (a) design problem, and (b) the final design variable distribution with 64 design variables per
element, with constraint on the design variables.

Table 5: Multi-resolution TO: the direct method leads to a reduction in computational time.

Design
variable/element

Objective Total design (inner iteration) time (s) Outer (avg. inner) iterations

Bisection Direct Bisection Direct Bisection Direct

4 198.405 198.406 18.30 (1.34) 17.14 (0.36) 405 (45.03) 406 (7.96)

64 198.396 198.396 106.30 (17.03) 95.57 (4.32) 500 (45.02) 500 (9.33)

direct method is insensitive to scaling of the Young’s modu-
lus and force values and hence scaling of the objective and
constraint is not required.

Several numerical experiments were conducted to com-
pare the two methods. The important conclusions were that
the computed designs, and the final objective do not depend
on the choice of the method. However, the direct method
leads to smooth convergence of the objective, and reduces
the design update time, i.e. the time spent in inner iterations.
This improvement is usually insignificant except when the
density filter is used or when the number of design variables
are large as in multi-resolution topology optimization.

The direct method is applicable to any topology opti-
mization problem with single active constraint including mu-
tually exclusive multiple constraints and nonlinear constraints.
Finally, to illustrate the simplicity of the direct method, drop-
in implementations are provided for popular Matlab-based
topology optimization codes. Although, only compliance-
related problems were considered here, the direct method

can be applied to other topology optimization problems as
well.

6 Replication of results

Modifications in various open-source Matlab codes have been
provided in Appendix to help readers reproduce the results.
The complete set of Matlab code is available at ersl.wisc.
edu/software/DirectLagrangeMultiplier.zip

Acknowledgments

The authors would like to thank the support of National
Science Foundation through grant CMMI 1561899. Prof.
Suresh is a consulting Chief Scientific Officer of SciArt,
Corp.

ersl.wisc.edu/software/DirectLagrangeMultiplier.zip
ersl.wisc.edu/software/DirectLagrangeMultiplier.zip

12 Tej Kumar, Krishnan Suresh

Compliance with ethical standards

Conflict of interests: The authors declare that they have no
conflict of interest.

7 Appendix

Here, we summarize the required changes to popular topol-
ogy optimization codes, in order to replace the bisection
method with the direct method. These changes can be easily
adapted to other codes such as fast topology optimization
based on reanalysis and conjugate gradient solvers [2, 1].

7.1 Modifications to 99-line code

For the classic 99-line code (top.m) [28], all that is needed
is to replace the OC function with the following:

39 function xnew=OC(nelx,nely,x,volfrac,dc)
40 change = true; move = 0.2; eta = 0.5;
41 varIn = true(nely,nelx);
42 xMax = min(x+move,1); xMin = ...

max(x-move,0.001);
43 volToDistribute = volfrac∗numel(x);
44 varTimesGrad = x.∗(-dc).ˆeta;
45 while(change)
46 xnew = varTimesGrad/ ...

(sum(varTimesGrad(varIn)) ...
/volToDistribute);

47 volToDistribute = volfrac∗nelx∗nely ...
-sum(xMax(xnew>=xMax)) ...
-sum(xMin(xnew<=xMin));

48 change = ∼...
isequal(and(xnew<xMax,xnew>xMin),varIn);

49 varIn = and(xnew<xMax,xnew>xMin);
50 end
51 xnew(xnew>xMax) = xMax(xnew>xMax); ...

xnew(xnew<xMin) = xMin(xnew<xMin);

7.2 Modifications to 88-line code

In the 88-line code (top88.m) [4], one must replace lines 70-
80 with the following:

70 change1 = true;move = 0.2;eta = 0.5;
71 varIn = true(nelx∗nely,1); x1 = x(:); ...

dc = dc(:); dv = dv(:);
72 xMax = min(x1+move,1); xMin = ...

max(x1-move,0);
73 gRem = volfrac∗nelx∗nely; gToDist = gRem;
74 xTimesR = x1.∗((-dc./dv).ˆeta);
75 if ft == 1
76 while(change1)
77 xnew = xTimesR/ ...

(sum(xTimesR(varIn))/gToDist);
78 upLgc = xnew>xMax;dnLgc = xnew<xMin;

79 gToDist = gRem - sum(xMax(upLgc)) - ...
sum(xMin(dnLgc));

80 change1 = ∼isequal(∼varIn,(upLgc |dnLgc));
81 varIn = ∼(upLgc |dnLgc);
82 end
83 xnew(upLgc) = xMax(upLgc);xnew(dnLgc) = ...

xMin(dnLgc);
84 xPhys(:) = xnew(:);
85 elseif ft == 2
86 temp1 = zeros(nelx∗nely,1); temp2 = ...

zeros(nelx∗nely,1);
87 while(change1)
88 temp1(:) = 0;temp1(varIn) = xTimesR(varIn);
89 xnew = xTimesR/ ...

(sum((H∗temp1)./Hs)/gToDist);
90 upLgc = xnew>xMax;dnLgc = xnew<xMin;
91 temp2(:) = 0;temp2(upLgc) = ...

xMax(upLgc);temp2(dnLgc) = xMin(dnLgc);
92 gToDist = gRem - sum((H∗temp2)./Hs);
93 change1 = ∼isequal(∼varIn,(upLgc |dnLgc));
94 varIn = ∼(upLgc |dnLgc);
95 end
96 xnew(upLgc) = xMax(upLgc);xnew(dnLgc) = ...

xMin(dnLgc);
97 xPhys(:) = (H∗xnew(:))./Hs;
98 end

To incorporate non-design regions, further modifications
to the 88-line code is given below. A logical array named
passive with true entry for every non-design element must
be created. Then lines 79-81 in the modified 88-line code
becomes,

79 gToDist = gRem - sum(xMax(upLgc)) ...
-sum(xMin(dnLgc)) -sum(passive);

80 change1 = ∼...
isequal(∼varIn,(upLgc |dnLgc |passive));

81 varIn = ∼(upLgc |dnLgc |passive);

In addition, line 91 changes to

91 temp2(:) = 0;temp2(upLgc) = ...
xMax(upLgc);temp2(dnLgc) = ...
xMin(dnLgc);temp2(passive)=1;

Lines 93-94 must be modified identical to the modifications
in line 80-81. Finally, xnew(passive) = 1; should be ap-
pended to line 83 and 96 so that they read:

83 xnew(upLgc) = xMax(upLgc);xnew(dnLgc) = ...
xMin(dnLgc); xnew(passive) = 1;

7.3 Modifications to 3D code

In the 3D code (top3d.m) [21], one must replace lines 82-88
with the following

Direct Lagrange Multiplier Updates 13

82 change1 = true;move = 0.2;eta = ...
0.5;ocIter = 0;

83 varIn = true(nele,1);
84 xMax = min(x+move,1);xMin = max(x-move,0);
85 gRem = volfrac∗nele; gToDist = gRem;
86 xTimesGrad = x.∗((-dc./dv).ˆeta);
87 temp1 = zeros(nele,1); temp2 = ...

zeros(nele,1);
88 while(change1)
89 temp1(:) = 0;temp1(varIn) = ...

xTimesGrad(varIn);
90 xnew = ...

xTimesGrad/(sum((H∗temp1)./Hs)/gToDist);
91 upLgc = xnew>xMax;dnLgc = xnew<xMin;
92 temp2(:) = 0;temp2(upLgc) = ...

xMax(upLgc);temp2(dnLgc) = xMin(dnLgc);
93 gToDist = gRem - sum((H∗temp2)./Hs);
94 change1 = ∼isequal(∼varIn,(upLgc |dnLgc));
95 varIn = ∼(upLgc |dnLgc);ocIter = ocIter ...

+ 1;
96 end
97 xnew(upLgc) = xMax(upLgc);xnew(dnLgc) = ...

xMin(dnLgc);
98 xPhys(:) = (H∗xnew(:))./Hs;

Further, to update the display in every iteration, line 6 (i.e.
the displayflag) must be removed, and line 94 in the orig-
inal code must be replaced with volshow(xPhys).

7.4 Modifications for nonlinear constraint

The following code can replace the bisection method in any
volume-minimization code [2, 1] available at github.com/
odedamir/topopt-mgcg-matlab. For instance in the code
minV.m, replace lines 83-96 with the lines below:

1 change1 = true;eta = 0.5;ocIter = ...
0;move = 0.2;

2 dc = dc(:);x1 = x(:);dcx1 = dc.∗x1;
3 R = ((-dc./dv(:)).ˆeta);gRem = ...

(compconst - comp);
4 xMax = min(x1+move,1);xMin = ...

max(x1-move,1e-10);
5 varIn = true(nelx∗nely,1);

Then, depending on the approximation used, the following
changes are sufficient:

Linear approximation :

1 gToDist = gRem+sum(dcx1);
2 cUps = dc.∗(xMax-x1); cDns = dc.∗(xMin-x1);
3 while(change1)
4 xnew = x1.∗R∗gToDist/ sum(dcx1.∗R.∗varIn);
5 upLgc=xnew>xMax;dnLgc=xnew<xMin;
6 change1 = ∼isequal(∼(upLgc |dnLgc),varIn);
7 varIn = ∼(upLgc |dnLgc); ocIter = ocIter ...

+ 1;
8 gToDist=gRem -sum(cUps(upLgc)) ...

-sum(cDns(dnLgc)) + sum(dcx1(varIn));

9 if (gToDist>=0||ocIter>15)
10 if move<1
11 move = min(move∗2,1);ocIter = 0;
12 xMax = min(x1+move,1); xMin = ...

max(x1-move,1e-10);
13 gToDist = gRem+sum(dcx1);varIn = ...

true(nelx∗nely,1);
14 cUps = dc.∗(xMax-x1); cDns = dc.∗(xMin-x1);
15 else, break; end
16 end
17 end
18 xnew(xnew>xMax) = xMax(xnew>xMax); ...

xnew(xnew<xMin) = xMin(xnew<xMin);

Reciprocal approximation :

1 gToDist = sum(dcx1)-gRem;
2 cUps = dcx1.∗(1-(x1./xMax)); cDns = ...

dcx1.∗(1-(x1./xMin));
3 while(change1)
4 xnew = x1.∗R∗sum(varIn.∗dcx1./R)/gToDist;
5 upLgc=xnew>xMax;dnLgc=xnew<xMin;
6 change1 = ∼isequal(∼(upLgc |dnLgc),varIn);
7 varIn = ∼(upLgc |dnLgc); ocIter = ocIter ...

+ 1;
8 gToDist = -gRem +sum(cUps(upLgc)) ...

+sum(cDns(dnLgc)) +sum(dcx1(varIn));
9 if (gToDist>=0||ocIter>15)

10 if move<1
11 move = min(move∗2,1);ocIter = 0;
12 xMax = min(x1+move,1); xMin = ...

max(x1-move,1e-10);
13 gToDist = -gRem+sum(dcx1);varIn = ...

true(nelx∗nely,1);
14 cUps = dcx1.∗(1-(x1./xMax)); cDns = ...

dcx1.∗(1-(x1./xMin));
15 else, break; end
16 end
17 end
18 xnew(xnew>xMax) = xMax(xnew>xMax); ...

xnew(xnew<xMin) = xMin(xnew<xMin);

Exponential approximation :

1 alpha = -3;xDcS2 = (dcx1.∗R.ˆalpha)/alpha;
2 gToDist = gRem + sum(dcx1)/alpha;
3 cUps = dcx1.∗(((xMax./x1).ˆalpha)-1)/alpha;
4 cDns = dcx1.∗(((xMin./x1).ˆalpha)-1)/alpha;
5 while(change1)
6 xnew = x1.∗R ...

∗(gToDist/sum(xDcS2(varIn))) ...
.ˆ(1/alpha);

7 upLgc=xnew>xMax;dnLgc=xnew<xMin;
8 change1 = ∼isequal(∼(upLgc |dnLgc),varIn);
9 varIn = ∼(upLgc |dnLgc); ocIter = ocIter ...

+ 1;
10 gToDist = gRem - sum(cUps(upLgc)) - ...

sum(cDns(dnLgc)) + ...
sum(dcx1(varIn))/alpha;

11 if (gToDist<=0||ocIter>15)
12 if move<1
13 move = min(move∗2,1);ocIter = 0;

github.com/odedamir/topopt-mgcg-matlab
github.com/odedamir/topopt-mgcg-matlab

14 Tej Kumar, Krishnan Suresh

14 xMax = min(x1+move,1); xMin = ...
max(x1-move,1e-10);

15 gToDist = gRem + sum(dcx1)/alpha; varIn ...
= true(nelx∗nely,1);

16 cUps = dcx1.∗(((xMax./x1).ˆalpha)-1)/alpha;
17 cDns = dcx1.∗(((xMin./x1).ˆalpha)-1)/alpha;
18 else, break; end
19 end
20 end
21 xnew(xnew>xMax) = xMax(xnew>xMax); ...

xnew(xnew<xMin) = xMin(xnew<xMin);

7.5 Modifications to PolyMat

Finally, for the PolyMat code [25], the function UpdateScheme
must be replaced with the following.

1 function [zNew,Change] = ...
UpdateScheme(dfdz,g,dgdz,z0,V0,opt)

2 nelem = size(dfdz,1); nmat = size(dfdz,2);
3 dfdz = reshape(dfdz,nelem∗nmat,1); dgdz ...

= reshape(dgdz,nelem∗nmat,1);
4 z0 = reshape(z0,nelem∗nmat,1); V0 = ...

reshape(V0,nelem∗nmat,1);
5 zMin=opt.zMin; zMax=opt.zMax;
6 move=opt.ZPRMove∗(zMax-zMin); ...

eta=opt.ZPREta;
7 change = true; ocIter = 0; gRem = ...

sum(dgdz.∗z0) - g;
8 zCnd = zMin + (V0-zMin) ...

.∗max(0,-(dfdz./dgdz)).ˆeta;
9 zCndGrad = zCnd.∗dgdz;

10 while (change)
11 varIn = true(nelem∗nmat,1); gToDist = ...

gRem;
12 zMax1 = min(z0+move,zMax); zMin1 = ...

max(z0-move,zMin);
13 zUpGrad = zMax1.∗dgdz; zDnGrad = ...

zMin1.∗dgdz;
14 while(change & rem(ocIter+1,15) ∼= 0 & ...

gToDist>=0)
15 zNew = zCnd∗gToDist/ sum(zCndGrad(varIn));
16 upLgc=zNew>zMax1; dnLgc=zNew<zMin1;
17 gToDist = gRem - sum(zUpGrad(upLgc)) - ...

sum(zDnGrad(dnLgc));
18 change = ∼isequal(∼varIn,(upLgc |dnLgc));
19 varIn = ∼(upLgc |dnLgc);ocIter = ocIter+1;
20 end
21 if move<1, move = min(1,move∗1.5); ...

else, break; end
22 end
23 zNew(upLgc) = zMax1(upLgc);
24 zNew(dnLgc) = zMin1(dnLgc);
25 Change = max(abs(zNew-z0))/(zMax-zMin);
26 zNew = reshape(zNew,nelem,nmat,1);

References

1. Amir, O.: Revisiting approximate reanalysis in topology optimiza-
tion: on the advantages of recycled preconditioning in a minimum

weight procedure. Structural and Multidisciplinary Optimization
51(1), 41–57 (2015)

2. Amir, O., Aage, N., Lazarov, B.S.: On multigrid-CG for efficient
topology optimization. Structural and Multidisciplinary Optimiza-
tion 49(5), 815–829 (2014)

3. Ananiev, S.: On Equivalence Between Optimality Criteria and
Projected Gradient Methods with Application to Topology Opti-
mization Problem. Multibody System Dynamics 13, 25–38 (2005)

4. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sig-
mund, O.: Efficient topology optimization in MATLAB using 88
lines of code. Structural and Multidisciplinary Optimization 43(1),
1–16 (2011)

5. Arora, J.S., Chahande, A.I., Paeng, J.K.: Multiplier methods for
engineering optimization. International Journal for Numerical
Methods in Engineering 32(7), 1485–1525 (1991)

6. Bendsøe, M.P.: Optimal shape design as a material distribution
problem. Structural Optimization 1(4), 193–202 (1989)

7. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in
topology optimization. Archive of Applied Mechanics 69(9-10),
635–654 (1999)

8. Bendsøe, M.P., Sigmund, O.: Topology optimization. Springer
Berlin Heidelberg (2004)

9. Berke, L., Khot, N.S.: Structural Optimization Using Optimality
Criteria. In: Computer Aided Optimal Design: Structural and Me-
chanical Systems, pp. 271–311 (1987)

10. Chandrasekhar, A., Kumar, T., Suresh, K.: Build optimization of
fiber-reinforced additively manufactured components. Structural
and Multidisciplinary Optimization 61(1), 77–90 (2020)

11. Deng, J., Chen, W.: Concurrent topology optimization of multi-
scale structures with multiple porous materials under random field
loading uncertainty. Structural and Multidisciplinary Optimiza-
tion 56(1), 1–19 (2017)

12. Fadel, G.M., Riley, M.F., Barthelemy, J.M.: Two point exponen-
tial approximation method for structural optimization. Structural
Optimization 2(2), 117–124 (1990)

13. Fleury, C.: Structural weight optimization by dual methods of con-
vex programming. International Journal for Numerical Methods
in Engineering 14(12), 1761–1783 (1979)

14. Fleury, C., Braibant, V.: Structural optimization: A new dual
method using mixed variables. International Journal for Numeri-
cal Methods in Engineering 23(3), 409–428 (1986)

15. Groenwold, A.A., Etman, L.F.: On the equivalence of optimality
criterion and sequential approximate optimization methods in the
classical topology layout problem. International Journal for Nu-
merical Methods in Engineering 73(3), 297–316 (2008)

16. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization.
Third revised and expanded edition, vol. 1, third rev. edn.
SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. (1992)

17. Kharmanda, G., Olhoff, N., Mohamed, A., Lemaire, M.:
Reliability-based topology optimization. Structural and Multidis-
ciplinary Optimization 26(5), 295–307 (2004)

18. Khot, N.S., Venkayya, V.B., Berke, L.: Optimum structural de-
sign with stability constraints. International Journal for Numerical
Methods in Engineering 10(5), 1097–1114 (1976)

19. Kiyono, C.Y., Vatanabe, S.L., Silva, E.C., Reddy, J.N.: A new
multi-p-norm formulation approach for stress-based topology op-
timization design. Composite Structures 156, 10–19 (2016)

20. Kumar, T., Suresh, K.: A density-and-strain-based K-clustering
approach to microstructural topology optimization. Structural and
Multidisciplinary Optimization 61(4), 1399–1415 (2020)

21. Liu, K., Tovar, A.: An efficient 3D topology optimization code
written in Matlab. Structural and Multidisciplinary Optimization
50(6), 1175–1196 (2014)

22. Nguyen, T.H., Paulino, G.H., Song, J., Le, C.H.: A computational
paradigm for multiresolution topology optimization (MTOP).
Structural and Multidisciplinary Optimization 41(4), 525–539
(2010)

Direct Lagrange Multiplier Updates 15

23. Qian, X.: Topology optimization in B-spline space. Computer
Methods in Applied Mechanics and Engineering 265, 15–35
(2013)

24. Sanders, E.D., Aguiló, M.A., Paulino, G.H.: Multi-material con-
tinuum topology optimization with arbitrary volume and mass
constraints. Computer Methods in Applied Mechanics and En-
gineering 340, 798–823 (2018)

25. Sanders, E.D., Pereira, A., Aguiló, M.A., Paulino, G.H.: PolyMat:
an efficient Matlab code for multi-material topology optimization.
Structural and Multidisciplinary Optimization 58(6), 2727–2759
(2018)

26. Schmit, L.A., Fleury, C.: Structural synthesis by combining ap-
proximation concepts and dual methods. AIAA Journal 18(10),
1252–1260 (1980)

27. Sethian, J.A., Wiegmann, A.: Structural Boundary Design via
Level Set and Immersed Interface Methods. Journal of Compu-
tational Physics 163(2), 489–528 (2000)

28. Sigmund, O.: A 99 line topology optimization code written in mat-
lab. Structural and Multidisciplinary Optimization 21(2), 120–127
(2001)

29. Stolpe, M., Svanberg, K.: An alternative interpolation scheme for
minimum compliance topology optimization. Structural and Mul-
tidisciplinary Optimization 22(2), 116–124 (2001)

30. Sui, Y., Yi, G.: A discussion about choosing an objective func-
tion and constraint conditions in structural topology optimization.
In: 10th World Congress on Structural and Multidisciplinary Op-
timization (2013)

31. Suresh, K.: A 199-line Matlab code for Pareto-optimal tracing in
topology optimization. Structural and Multidisciplinary Optimiza-
tion 42(5), 665–679 (2010)

32. Svanberg, K.: The method of moving asymptotes-a new method
for structural optimization. International Journal for Numerical
Methods in Engineering 24(2), 359–373 (1987)

33. Talischi, C., Paulino, G.H., Pereira, A., M Menezes, I.F., M
Menezes, I.F.: PolyTop: a Matlab implementation of a general
topology optimization framework using unstructured polygonal fi-
nite element meshes. Structural and Multidisciplinary Optimiza-
tion 45, 329–357 (2012)

34. Tavakoli, R., Mohseni, S.M.: Alternating active-phase algorithm
for multimaterial topology optimization problems: A 115-line
MATLAB implementation. Structural and Multidisciplinary Op-
timization 49(4), 621–642 (2014)

35. Venkayya, V.B.: Optimality criteria: A basis for multidisciplinary
design optimization. Computational Mechanics 5(1), 1–21 (1989)

36. Venkayya, V.B., Khot, N.S., Berke, L.: Application of optimality
criteria approaches to automated design of large practical struc-
tures. In: Second symposium on structural optimization, pp. 1–19
(1973)

37. Wang, M., Wang, X., Guo, D.: A level set method for structural
topology optimization. Computer Methods in Applied Mechanics
and Engineering 192(1-2), 227–246 (2003)

38. Watts, S., Arrighi, W., Kudo, ·.J., Tortorelli, D.A., White, D.A.,
Kudo, J., Tortorelli, D.A., White, D.A.: Simple, accurate surro-
gate models of the elastic response of three-dimensional open truss
micro-architectures with applications to multiscale topology de-
sign. Structural and Multidisciplinary Optimization (2019)

39. Xia, L., Breitkopf, P.: Design of materials using topology opti-
mization and energy-based homogenization approach in Matlab.
Structural and Multidisciplinary Optimization 52(6), 1229–1241
(2015)

40. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for
structural optimization. Computers and Structures 49(5), 885–896
(1993)

41. Yin, L., Yang, W.: Optimality criteria method for topology opti-
mization under multiple constraints. Computers and Structures
79(20-21), 1839–1850 (2001)

42. Zuo, W., Saitou, K.: Multi-material topology optimization using
ordered SIMP interpolation. Structural and Multidisciplinary Op-
timization 55(2), 477–491 (2017)

	Introduction
	Bisection Method
	Direct Computation of Lagrange Multiplier
	Numerical Experiments
	Conclusions
	Replication of results
	Appendix

